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INTERSECTION NUMBERS OF CYCLES
ON LOCALLY SYMMETRIC SPACES

AND FOURIER COEFFICIENTS
OF HOLOMORPHIC MODULAR FORMS

IN SEVERAL COMPLEX VARIABLES
by STEPHEN S. KUDLA* and JOHN J. MILLSON**

Abstract. — Using the theta correspondence we construct liftings from the cohomology with compact supports
of locally symmetric spaces associated to 0{p, q) (resp. U(/>, q)) of degree nq (resp. Hodge type nq, nq) to the space
of classical holomorphic Siegel modular forms of weight (p + <?)/2 and genus n (resp. holomorphic hermitian modular
forms of weight p + q and genus n). It is important to note that the cohomology with compact supports contains
the cuspidal harmonic forms by Borel [3]. We can express the Fourier coefficients of the lift of7] in terms of periods
of T) over certain totally geodesic cycles—generalizing Shintani's solution [21] of a conjecture ofShimura. We then
choose T) to be the Poincare dual of a (finite) cycle and obtain a collection of formulas analogous to those of Hirze-
bruch-Zagier [8]. In our previous work we constructed the above lifting but we were unable to prove that it took
values in the holomorphic forms. Moreover, we were unable to compute the indefinite Fourier coefficients of a lifted
class. By Koecher's Theorem we may now conclude that all such coefficients are zero.

This paper is the result of a number of years work [9-14], and was announced
in [17]. For some time we have been studying the relationship between two types of
cohomology classes for arithmetic quotients of the symmetric spaces attached to ortho-
gonal and unitary groups. The first type of cohomology class has a geometric description
as the Poincard dual classes to natural cycles on the above arithmetic quotients. These
cycles are themselves unions of arithmetic quotients of totally geodesic subsymmetric
spaces associated to smaller orthogonal or unitary groups. They generalize the classical
Hurwitz correspondences and the cycles in the Hilbert modular surfaces considered
by Hirzebruch-Zagier [8]. The second type of cohomology class has an analytic description
in terms of automorphic forms on the above arithmetic quotients constructed using the
theta correspondence. This correspondence is realized by an integral transformation with
kernel a theta function defined on a product of two locally symmetric spaces. The new
development that led to this paper is the discovery of a new method to use the Cauchy-
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122 STEPHEN S. KUDLA AND JOHN J. MILLSON

Riemann equations in the general theory of the theta correspondence. Our method is
based on a study of the double complex of relative Lie algebra cohomology with values
in the oscillator representation associated to a dual reductive pair. We use such algebraic
considerations to show that the B-operator applied to one variable of the kernel is an
exact differential form in the other variable. Combining this result with Stokes9 Theorem,
we are able to deduce that the transform^ of closed rapidly decreasing differential forms
are holomorphic Siegel or hermitian modular forms. Our idea may be summarized by the
following formal calculation which is made precise in Lemma 3.3. All the integrals are
with respect to z.

8 (JM^ ̂  A ̂ ) =± JM^ ̂  A ̂  == JM^ ̂  A ̂
: J^e^(T, z) A ^{z) = J^(e^(T, z) A T](^)) == o.

The key step 3cp = d^ is the double complex argument alluded to above and the last
equality is Stokes' Theorem—here it is necessary that T] is rapidly decreasing. We should
perhaps point out that the Howe correspondence on the centers of the universal enveloping
algebras ofG and G' (see below) gives only that the above integral is harmonic, i.e., annihi-
lated by D = ~88* +~8*~8 and this does not imply that the integral is annihilated by '9
unless it is in L2 which is not usually the case. The harmonicity of the integral does not
imply the vanishing theorem for its indefinite Fourier coefficients. This vanishing is of
critical importance to us. Moreover the correspondence at infinity underlying our corres-
pondence does not always agree with Howe's quotient correspondence. For example
if G = 0{2p, 2q) then our correspondence assigns a holomorphic representation of Sp^(R)
to the trivial representation of 0{2p, 2q). We will discuss this point in detail in a later
work. Our lift should be of significance in arithmetic algebraic geometry since it assigns
algebraic objects (holomorphic modular forms) to transcendental objects (cuspidal
harmonic forms). In particular if it can be established that our lift is injective one could
assign compatible systems of/-adic Galois representations to the above cuspidal harmonic
forms. In order to state our first theorem we will need to establish some notation.

Let M be a quotient of the symmetric space D of G = 0(/», q) (resp. G = V{p, q))
by an arithmetic subgroup F of standard type (see below). To simplify notation in the
following discussion we will assume that the underlying number field is Q^ (resp. ima-
ginary quadratic). The general case is treated in the body of the paper. Let V be the
standard module for G and ^(V") denote the Schwartz space of the direct sum of n
copies of V. In what follows ( , ) will denote a fixed symmetric (resp. hermitian)
form on V of signature (p, q) such that G is the isometry group of ( , ). We also
assume p ^ q and n ̂  p. Let G' denote Sp^(R) (resp. U(%, n)) and 5' be the non-trivial
2-fold cover of G (resp. the non-trivial 2-fold cover which is trivial on SU(n, n)).
Then G X G' operates on ^(V") by the (restriction of the) oscillator representation and
consequently the continuous cohomology group H^(G, ^(V")) is a module for 6'.
Let fo be the Lie algebra of the maximal compact subgroup K' of 6' that covers U(n)
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(resp. U(n) X U(w)) and po be its orthogonal complement in Qo, the Lie algebra of G',
computed using the Killing form. Then the projection G' -> G'/K' identifies po with
the tangent space to G'/K' at <?K/. We let p~ denote the subspace of po (x) C which is
identified with the anti-holomorphic tangent space to G'/K' at <?K' (see § 6 for the
definition of the complex structure on G'/K/). We let f be the complexification of fo
and q be the parabolic subalgebra of 9' = QQ ® C given by q == f ® p". We will use
the following notation. If m is a Lie algebra, / : m -> C is a homomorphism and U is
an m-module, then U^ will denote the subspace of U defined by

U^ = { u e U : xu = -^{x) u all x e m }.

The next definition will play a very important role in this paper.

Definition. — A class 9 £H^(G, ^(V")) which is annihilated by p~ will be said
to be holomorphic. The set of all such classes will be denoted H^(G, ^(V*))^.

We next observe that there is a natural map

erH^G^V^^H^C).

Indeed we have the restriction map H'^(G, ̂ (V^) -^ ff(r, ^(V")). But the F-invariant
linear functional © : ̂ (V^ -> C (see § 3) induces a map H'(r, .S^V")) -> H'(F, C).
The map 9 -> 6(9) is then defined to be the composition of the two previous
maps. Now let ^ denote the character of SL' given by ^(^') == det^')"*72 (resp.
^') =det+{k')mdet-{kf)-m, where det±:V{n) X U{n) -> S1 are the determinants
on the first and second factors). We may associate a 6'-homogeneous line bundle ,Sf^
over G'/K/ to the character /^ above.

We now consider the bilinear pairing

(( , )) : H;(M, C) x H^G, ^(V")) -^ COO(S')

given by
((^?))(^)-J^A6W)9).

Here we have set a == dim^ M and we have represented O^C^') 9) by a closed {a — i)-form
on M and T] by a compactly-supported closed z-form on M. We will describe (( , ))
and 6 more concretely in § 3.

It is well-known (§ 3) that if 9 e H^-^G, ^(V"))^, then we may iden-
tify ((T], 9)) { g ' ) with a harmonic (i.e. annihilated by D above) section of the quotient
of -S?̂  by a certain arithmetic lattice F' C G'—we will denote this quotient line bundle
by oSf^ also. One of our main points is that if 9 is a holomorphic class, then ((^,9)) { g ' )
is identified with a holomorphic section of JSf^. We note that

H:,-(G, ^(V-))^ = H^-^G, ^(V))"- n H^G, ^(V»))^.

Before stating out first theorem we need to introduce a g'-invariant subspace of
the continuous cohomology H^(G, ^(V")). We recall [2, 5.1] that the choice of a
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maximal compact subgroup K C G is equivalent to the choice of a positive definite
form ( , )o on V which is a minimal majorant of the given form ( , ) on V of signa-
ture (j&, q). We define the Gaussian 90 e ̂ (V") by

9o(^...^J =^^--Tt(^)o.
Definition. — The polynomial Fock space S(V71) C ^(V^) is defined to be the space

of those Schwartz functions on V" of the form p{v-^, ..., »J 90(^1? • • • ? vn)9 where
p(v^y . .., yj is a polynomial function on V91.

Remark. — The term (< polynomial Fock space " is chosen because the image
ofS^^) under the intertwining map i o f § 6 from the Schrodinger model of the oscillator
representation to the Fock model is the subspace ^(C^) of holomorphic polynomials
on C^.

The subspace S(V") is invariant under the actions of Q and 3' (the complexified
Lie algebras ofG and G'). We recall, given a choice ofK, that the van Est Theorem [4],
IX, 5.6, gives a canonical isomorphism v from continuous cohomology to relative Lie
algebra cohomology

v : H:<(G, ^(V-)) -^ H-(g, K; ^(V-)).

Definition. — We say that a class 9 e H^(G, ^(V^) takes values in S^) ifv(9) is
in the image of the natural map

H-(a, K; S(V71)) -> H-(a, K; ^(V-)).

We may now state our first theorem. In what follows m = p + q.

Theorem 1. — (i) The induced pairing
( ( , ) ) : H:(M, C) x H^(G, ^(V"))^ -> r(JS^)

takes values in the holomorphic sections, that is, in the space of Siegel (resp. hermitian) modular
forms of weight mf2 (resp. m) and appropriate level.

(ii) If Y) eH^(M,C) and 9 eH^-^G, ̂ (V^))^, then all Fourier coefficients a^ of
((Y], 9)) (^') are zero except the positive definite or positive semi-definite ones. Suppose further that 9
takes values in S^^. Then there exist certain totally geodesic cycles Cp on M determined by (3
and independent of 7^ and 9 and associated to smaller orthogonal (resp. unitary) groups such that a^
is the period over Gp of the exterior product oft\ and a form ^3(9) determined by 9 which comes
from an invariant form on the universal cover of Gp.

Remark. — This theorem is a somewhat formal consequence of our earlier papers [13]
and [14] though a certain amount of work (§ 4) has to be done to compute the positive
semi-definite Fourier coefficients. However it is by no means obvious that any holomorphic
classes exist. Most of this paper is devoted to proving the existence of holomorphic classes
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9^ e H^(0(^ ̂  ̂ (V-)) and 9^ e H^(U(A y), ^(V-)) which take values in S^).
For these choices of 9 the invariant forms ^3(9) above are the restrictions of invariant
forms on D which depend only on n and q. Once one has made explicit the Fourier
expansion of ((T], 9)) for these choices of 9 one obtains a large number of formulas ana-
logous to those of Hirzebruch-Zagier [8] as we now describe.

The rest of this introduction is devoted to describing how the generating function
for the intersection numbers of a fixed finite cycle C with the members of the family of
locally finite cycles

{ Cp : p e MJfl?), y = (B, (B ^ 0 at all infinite places }

described in § 2 is a Siegel (or hermitian) modular form. Our method of proof is to use
the previous correspondence with 9 = 9^ (resp. 9^ ^) and T] the Poincare dual of C
to construct a holomorphic modular form, which is then shown to have the above gene-
rating function as its Fourier series. Our results are the analogues of tho3e of Hirzebruch-
Zagier [8] for the Hilbert modular subgroups of 0(2, 2) and Shintani [21] for 0(2, 1).

Let & be a totally real number field of degree r, let 0 be the ring of integers
in k, and let V be a vector space of dimension m over k. Let R be the set of archi-
medean embeddings of k. Let ( , ) be a quadratic form on V with signature (p, q) at
one archimedean embedding ofV and positive definite at the others. Let (B be a symmetric
n X n matrix with entries in (D that is positive semi-definite at all archimedean embeddings
ofk. Then as described in § 2 we can construct a locally-finite cycle Gp in the arithmetic
quotient M == r\D of the symmetric space D of0(^, q). Here F is a congruence subgroup
of the group of units of ( , ). The cycle G^ is of dimension {p — t) q where t = rank P.
If q is even there exists an invariant q-form e^ the Euler form, on D (see § 9 for the
definition). We define ^ == 0 if q is odd. Suppose T) is a closed rapidly decreasing
{p — n) q'form on M (if M is compact all Y] are considered to be rapidly decreasing).
See [3] for the meaning of the term (< rapidly-decreasing". If rank (B == t, then

dim Gp = (p — t} ^anddeg T) A ^ -< = {p — t) q and we can take the period T] A ^-(.
Jcp

We define a generating function P(r, T]) for these periods with T c ̂  (here ^ denotes
the Siegel upper half-space of genus n). We let JS? denote the lattice of symmetric n X n
matrices with entries in (9 in the product of r copies of the real n X n symmetric matrices.
We let oSf(/) denote the set of those elements of JSf which have rank t and are positive
semi-definite at all places ofk. We will employ the following notation throughout. If
z e C , we will abbreviate exp{2niz) to e{z). If z = (^) eM^C)'1, then e^z) will
denote <?(1/2 tr S^^ X((B) ^). We can now define P(r, T])

P(T,7)) = S S ( f 7j A ̂ U^)-
(=o pe^«) \Jcp /

Remark. — If q is odd the sum is only over (B of rank n.
We then have the following theorem, generalizing Shintani [21].
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Theorem 2. — The function P(r, T)) is a holomorphic modular form of weight m /2 for a
suitable congruence subgroup of Sp^(^). If q is odd, P(r, T)) ^ a cusp form.

There is also a homology version of Theorem 2. Let G be a finite (compact)
nq-cycle in M. Then the Poincar^ dual cohomology class to G has a compactly supported
representative. Substituting this form for T] in the above theorem, we obtain the following
analog of Hirzebruch-Zagier [8]. Define I(r, G) for T e ̂  by

I^^=^^c•{c^e^eM'
Here . denotes the intersection product of cycles and n is the (right) cap-product
between cohomology and homology $ that is, we have for deg C == {? — t) q,
deg 73 = (p —- %) y and deg co == (w — t) q

7j A CO === [ 7].7)A CO ==
Jc Jc/C Jcn<o

Theorem 2 (bis). — The function I(-r, C) ^ a holomorphic modular form of weight m[2
for a suitable congruence subgroup of Sp^(^P). If q is odd, I(r, G) is a cusp form.

We have a corresponding theorem for the symmetric spaces of the unitary groups
U(^, q). Let F be a totally imaginary quadratic extension of the field k above, let Q be
the ring of integers in F, and let V be a vector space of dimension m == p -{- q over F.
Let R be a cross-section for the action of complex conjugation on the archimedean
embeddings ofF. Let ( , ) be a hermitian form on V with signature (p, q) at one complex
conjugacy class of archimedean embeddings of F and positive definite at the others.
Let (B be a hermitian n X n matrix over Q that is positive semi-definite at all archimedean
embeddings of F. Again we have locally-finite cycles Cp for each such matrix (3 in
arithmetic quotients M = F\D of the symmetric space D of U(^, q). Here F is a con-
gruence subgroup of the group of units of ( , ). The cycle Gp is of complex dimension
(p — t) q where t = rank p. For all q there exists an invariant 2^-form ^, the qth Ghern
form, on D (see §9 for the definition of Cy).

Now suppose T] is a closed rapidly decreasing 2{p — n) q form on M. If M is
compact, all T) are considered to be of rapid decrease. If rank (B == t we can take the

period T] A ^-(. We define the generating function P(r, Y]) for these periods as (3 runs
Jcp

through the lattice JSf of hermitian n X n matrices with entries in 6 in the product of r
copies of the hermitian n X n matrices. We let oS?(^) denote the set consisting of those
elements of JS^ that have rank / and are positive semi-definite at all places ofk. We will
use the symbol U(w, n) to denote the isometry group of the standard split skew-hermitian
form < , > on C271. We have, for ^, ̂ , . . . , e^ the standard basis,

2n 2n n

< 2 ^ e^ S w, e, > = S (^ z^+, ~ ^+^w,).
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We let €!!)„ be the symmetric space of U(n, n), the space of complex n X n matrices
T == u + iv with positive definite skew-hermitian part (i.e., u is hermitian, iv is skew-
hermitian, and v is positive definite). Let T e (C^J*". We define

P(T,7))= S S ff 73 A ̂ -^(M.<-o pe^«)\JcQ ^ * ̂  /< - o pe^«) \Jcp - y - -

We have the following theorem.

Theorem 3. — The function P(T, T]) is a holomorphic modular form of weight mfor a suitable
congruence subgroup of the group of (!)-points of\J(n,n).

We have a corresponding theorem in terms of intersection numbers of cycles.
Let C be a finite (compact) 2^-cycle. Define I(T, C) for T e (Cl^ by

^^.io^,0-^0^"^-^-
Theorem 3 (bis). — The function I(r, C) is a holomorphic modular form of weight mfor

a suitable congruence subgroup of the group of (B-points of U(TZ, n).

In order to make a true generalization of the results of Hirzebruch-Zagier [8] one
is forced to give up the hypothesis that T] has rapid decrease. This creates enormous
complications. First the integral defining Q^(r\) (see § 3 for the meaning of this symbol)
usually does not converge. Even if the integral converges, or one defines the integral
by regularization, [18], the automorphic form 6<p(7)) will no longer necessarily be holo-
morphic; there will be a formula for 89^(7]) involving an integral over the cc boundary "
of r\D (recall that 1) applied to the integrand defining 9y(7]) was not zero but was exact).
Finally, cycles associated to the isotropic vectors will contribute to the singular Fourier
coefficients. It seems likely that Eisenstein cohomology will make an appearance at this
point. Gogdell [5] has analyzed the situation in the case M is a finite-volume quotient
of the 2-ball in terms of the desingularization of the Baily-Borel compactification. The
second author [18] has shown that for the case G == 0(p, 1) the singular Fourier coef-
ficients of ((•/], 9)) involve periods of T) over certain tori in the Borel-Serre boundary.
It will be interesting to see if there is a compactification that will allow a similar analysis
in the general case.

We would like to thank Mark Stern for suggesting the proof of Lemma 4.2, Roger
Howe for suggesting that we look at the " Howe operators 9? of § 5 and G. Harder,
F. Hirzebruch, J. Schwermer and D. Zagier for encouragement and hospitality at the
Max-Planck Institut fur Mathematik in Bonn where a considerable amount of the work
on this paper was done. Also we should mention the work ofY. L. Tong and S. P. Wang
[22-26] running parallel to our papers [9-14]. Finally, we would like to thank the referee
for an extraordinarily thorough critique of our original manuscript.
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1. Special cycles

In what follows D = G/K will be a Riemannian symmetric space with G a semi-
simple Lie group having no compact factors and K. C G a maximal compact subgroup.
We let PC G be a torsion-free lattice and M = F\D be the associated symmetric space.
Let n : D -> M be the covering projection. Now suppose a^ is an isometry ofD of order 2
such that

(TI I^i == r.

Let DI be the fixed point set of a^ in D, and Let I\, G^ K.i be the fixed-point sets of CTI
in r, G, and K respectively. Then D^ is a totally geodesic subsymmetric space of D
isomorphic to G^/K^. We let M^ = I\\Di be the corresponding locally symmetric space.
We assume that T has been chosen so that M^ is orientable (this can present a problem,
but we have been able to deal with it in the cases of interest here). The restriction ofn
to DI induces a map j\: M^ -> M.

Lemma 1 . 1 . — Suppose P is arithmetic and Gi is defined over Q^. Then j\ is a proper
embedding onto a totally geodesic submanifold of M.

Proof. — The proof of Lemma 2.7 of [1] is valid for any rational reductive MC G
(notation of [1]). But G^ above is rational and reductive. •

We call the locally finite cycle represented by the image ofj\ a special cycle. If M is
compact, then Mi will also be compact. The image ofj\ is a component of the fixed-
point set of CTI acting on M.

Millson and Raghunathan were led to consider such cycles because of remarkable
property they satisfy. They come in complementary pairs. In fact this is true only under the
further condition (usually satisfied in practice) that there exist<( rational points " on D^.
By this we mean a point x e D^ such that the associated Gartan involution 6 satisfies
6r6 C r. In this case we put c^ = Qa-^ and define Dg to be the fixed-point set of erg. If M
is compact, the image Mg ofDg in M is compact. If the intersection number ofM^ and Mg
is nonzero, neither is a boundary.

Example.

Here D is the upper half-plane and CT^ and (Tg are reflections in thej^-axis and unit circle
respectively.

Using the above idea, Millson and Raghunathan were able to give many examples
of non vanishing cohomology groups for locally symmetric spaces [19].
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2. Special cycles in orthogonal and unitary locally symmetric spaces

In this paper we will be concerned only with the cases in which D is the symmetric
space ofOQ&, q) or V{p, y). In this case we can take advantage of the projective structure
of D to better understand special cycles. Let k be a totally real field (respectively, totally
imaginary quadratic extension of a totally real field) and 0 be the ring of integers in k.
Let 31 = { Xi, ..., \} be the set of archimedean embeddings (resp. archimedean embed-
dings up to conjugation) of k. In the second case, let kg be the totally real subfield
of k fixed by complex conjugation. Let V^ be a vector space over k and L C V^
an ^-lattice. Let ( , ) be a nondegenerate quadratic (respectively, hermitian) form on V^,
which is integral (^-valued) on L and has signature {p, q) at one archimedean comple-
tion ofk and is positive definite at all other classes of archimedean completions ofk. We
let V be the vector space of real points of the vector space obtained from V^ by restriction
of scalars from k to Q, (resp. k^ to Q,). Then we have an isomorphism of real vector spaces

v^e^v^
where V^ is the completion ofV^ corresponding to X,. We will assume that the form
( 3 ) 1 induced on V^ by ( , ) has signature {?, q), and consequently that the form ( , )a
on V00 induced by ( , ) is positive definite for a ^ 2. We will abuse notation and use ( , )
to denote the induced form on V. This form is the orthogonal direct sum of the forms ( , )^
for a = 1, 2, ..., r. We will again abuse notation and let L denote the Z-lattice in V
induced by the ^-lattice L in V^. Finally, we let G^ denote the subgroup of Au^V^)
consisting of isometrics of ( , )a, and let G == 11;̂  G^. Then G is isomorphic to the
real points of the reductive group over Q^ obtained from the isometrics of the form ( , )
on V^ by restriction of scalars from k to Q, (resp. kg to Q,). We note that G^ ^ 0(^, q)
(resp. U(^, q)) and G^ ^ 0{m) (resp. U(w)) for a > 2.

Let r denote a torsion-free congruence subgroup of the subgroup of GL(V) pre-
serving L and ( , ). Let U^ C V^ be an oriented rational subspace such that ( , ) | U^ is
nondegenerate, and let U C V be the space of real points of the Q, "vector space obtained
from U by restriction of scalars. Then we will construct special cycles C^C r\D, where
D is the symmetric space of the isometry group G of ( , ). Since ( , ) | U is nondege-
nerate, we have a direct sum decomposition V == U + U1. Recall that we may consider D
as the open subset of the Grassmannian Grg(V) consisting of those y-planes Z such
that ( , ) | Z is negative definite. We may now define a subset D^j C D by

D u = { Z e D : Z = = Z n U + Z n U 1 }

We let G^j denote the stabilizer of U in G and G^ be the connected component of the
identity in G^. We put I\j == F n G^ and 1̂  == F n G^. We let G^j == r^\D^ whence
GU is an orientable manifold. Since n: Cy -^ F\D == M is proper, the pair (G^j, re) is
a (locally—finite) singular cycle. We have the following elementary lemma which
< c resolves the singularities of Tr(G^) ".

17
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Lemma 2.1. — There exists a normal subgroup of finite index F'C F such that the upper
horizontal arrow in the following diagram is an embedding,

r^\^ -^ r\D
i i

r^\D^ -"-. r\D

Proof. — Let (T^ be the involution which is + 1 on U and — 1 on U1 and let F'
be a normal subgroup of finite index in F which is normalized by CT^. The lemma follows
from the "Jaffee Lemma", Proposition 2.2 of [19]. •

Remarks. — It is still possible in the case G^ == SOQ&, q) that F^D^ is not orien-
table. However we may deal with this problem in the case that will concern us here as
follows. Suppose ( , ) | U is positive define. We may choose F' so that the rational spinor
norm of every element of f is 1 [19], Proposition 4.1. In this case r^\D^ is orientable.
In summary, at least for the case ( , ) | U positive definite, up to finite coverings the
singular cycle (G^ TC) is carried by an embedded oriented submanifold of M == F\D.
We will abuse notation and use the symbol G^j instead of (G^j, n).

We now explain how an orientation of U gives rise to an orientation of D.j. The
following discussion of orientability involves only V^. To simplify notation, we will
assume for the next five paragraphs that r = 1. We will need a rule for orienting the
tensor product V ® W of two oriented vector spaces V and W. We will use the rule that
i f{y i , . . ., v^} is a properly oriented basis for V and { w^, .. ., w^} is a properly oriented
basis of W, then the basis { y,® w^\ 1 ̂  i< m, l ^ j ^ n } ordered by the lexicographic
order read from right to left (so ^ ® w^ comes before ^ ® w^) is a properly oriented
basis for V ® W. Since V* is canonically oriented if V is (the dual of a properly
oriented basis is defined to be properly oriented) we obtain an orientation on
Hom(V, W) ^ V* ® W. We choose a basepoint ZQ e D and choose an orientation of Zo
and an orientation ofV once and for all. Propagate the orientation of ZQ continuously
to orient all other Z e D. Orienting D is equivalent to giving an orientation of Hom(Z, Z1)
which depends continuously on Z. Since V is oriented we obtain an induced orientation
of Z1 such that the orientation of Z1 followed by that of Z is the orientation of V. Then
T^(D) ^ Hom(Z, Z1) is oriented. With our conventions, if we choose the basis

{ <o^ | 1 ̂  a < p , p + 1 < pi ^ p + q}

of § 5 for T^(D) ^ p*, then the element

COi^+iA ... A (OI,P+(,A ... A ^y+iA ... A (0^4.,

is a properly oriented basis element for A^ T^(D) in the orthogonal case.
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Now it is easily seen that there are canonical isomorphisms of the tangent space
T^(D^) and the normal space Vz(D^)

T^(D^) ^ Hom(Z n U, Z1 n U) + Hom(Z n U1, Z1 n U1),
and ^(D^) ^ Hom(Z n U, Z1 n U1) + Hom(Z n U1, Z1 n U).

We will now use the above considerations and orientation of U to orient Vz(D^).
Then T^(D^) will receive an orientation by the rule that the orientation of T^(D^)
followed by the orientation of Vz(DJ is the orientation of T^(D). Since the problem
of orienting Vz(D^) is somewhat complicated for general U, we will discuss only the case
in which ( , ) | U is positive definite. In this case we have

Tz(DJ ^ Hom(Z, Z1 n U1)

and ^(DJ ^ Hom(Z, U).

Thus we may orient Vz(D^) by the rule indicated above.
The signature of ( , ) | U plays an important role in understanding the nature of

the class C^. Suppose then that the signature of ( , ) | U is (r, s); whence dim U = r + s.
The case in which r or s is zero is of special importance. In case s = 0, then U is a positive
r-plane (so r ^ p) and

D u = { Z e D : Z C U 1 } .

In case r == 0, then U is a negative .y-plane (so s ^ q) and

D u = = { Z e D : Z 3 U } .

We say such special cycles are of definite type. We say the other cycles are of mixed type.

Example. — D == H X H. In this case the definite cycles correspond to quotients
of linearly embedded upper half-planes. The mixed cycles correspond to products of
two geodesies; they are totally real geodesic tori.

In what follows we will use certain linear combinations C^ of the cycles C^. In
order to define these we introduce some terminology. If X = (x^, x^, . . . ,A:J eV",
then (X, X) will denote the symmetric (resp. hermitian) matrix such that

(X,X)^ = [x,,x^.

If r > 1 we will need to keep track of the index in the decomposition

v^e^v^,
and the corresponding decomposition

X== (X^X^, ..^X^).

The symbol (X, X) will mean the r-tuple of n X n symmetric (resp. hermitian) matrices
given by

(X,X)==((X( l\X( l)),...,(X(r),X<r))).
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Thus if p = (p'1', ..., p(rt) is an r-tuple of such matrices, the equation (X, X) = B
means termwise equality.

We now wish to discuss the G-orbits of V".

Definition. — The orbit <5 = GX is

(i) non-singular if rank (X100, X^) = n for a. == 1, 2, . . . , r
(ii) non-degenerate if rank (X^, X10") = dimg span X<" (resp.'dinic span X^'), that is

( , ) | span X*"" is non-degenerate, for a == 1,2, ..., r,
(iii) degenerate if ( , ) [ span X'"' is degenerate for some a e { 1, 2, ..., r } .

We note that the zero orbit is non-degenerate but singular. We note also that an
orbit 0 is closed if and only if it is non-degenerate.

Now suppose (PC V" is closed G-orbit. Then by Borel [2], Theorem 9 . 1 1 , <B n L"
consists of a finite number of F-orbits. We choose F-orbit representatives { Y^, Yg, ..., Y }
and let U, = span Y,.. We then define Gy by

C,=S^..

We have explained how an orientation of U^ induces an orientation of Gp . In case
the elements of Y,. are independent we give U, the orientation determined by Y..
Otherwise we refine Y,. to a basis ,̂. starting at the left. More precisely, 38. is defined
as follows. Suppose Y, = { Y,,, ..., ¥,„ }. Then Y,, e ̂ , if and only if Y. + 0. Also
Y,. e ̂ ,. if and only if Y,, i span{ Y,,, .. ., Y^._,, }.

We now define ^CV» for (3 = ((B<", .... (̂ ') an r-tuple of n by n symmetric
(resp. hermitian) matrices by

^={XeV»:(X,X) =(3}.

Clearly if X e^p, then 0 = GXC ̂ . In case p'01' is positive definite for all a, then G
acts transitively on ̂  and 0 = J2p. In case [3 is a totally positive definite symmetric (resp.
hermitian) matrix over k we will henceforth identify (3 with the r-tuple (^((B), .... X,([3))
and we will write Cp instead of Cy for the cycle corresponding to 0 == ^g. In this case Cg
is a locally finite cycle such that each irreductible component has real dimension (ft — n} a
(resp. 2(p - n) q).

Suppose now that (3 is positive semidefinite and has rank t with t < n. Then ^g is
a union of G-orbits. However it contains a unique closed orbit 2^ described as follows:

^3 = { X e ̂ p : dim span X'0" = t, for all a }.

Lemma 2.2. — The group G operates transitively on Sa.

Proof. — It suffices to consider the case r = 1 by successively applying the argument
for r = 1 to the components X10" and (X')*".

Let X, X' e j2p. Let U = span X, U' = span X'. We claim that the map/: X -> X'
given by f{x,) = x',, KJ'^K, extends to a linear map F : U -^U'. Suppose that
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c! x! + • • • + ̂  Xn = 0 is a dependence relation among x^, .. ., ̂ . Let ^ be the row-
vector (^i,^, . . . ,cJ. Then the row-vector <:(3 == 0 because it represents the linear
functional (^ ̂  + . . . 4- ^ ̂ , .) on U relative to the spanning set x^ .. ., A:,,. But
then the linear functional (^ ̂  + ... + c^ x^, .) on U' is also zero because it is
also represented by the row-vector c(3. Since ( , ) | U' is nondegenerate we conclude that
q x[ + ... + ̂  ̂  = 0. •

If (3 is a totally positive semi-definite matrix with entries in k, we will use the above
identification and let Cp denote the cycle Cg, associated to the closed orbit J?j|.

As it stands Cp would frequently be zero for trivial reasons. Indeed pairs of frames
Y == (A-i, . .., A-J and Y' == (— x^ x^ . . ., x^) would occur in «2p if (3 were diagonal.
To avoid such cases where €3 would be trivially zero we modify its definition by intro-
ducing a congruence condition. Let A e Ln and a C (9 be an ideal. Then we replace
J?3 n 1^ above by J?p n (h + aL"). We assume that y e r implies y == 1 "^od a so
that r operates on this intersection. Once again there are a finite number of F-orbits.
We choose F-orbit representatives <^ = { Yi, Yg, . . . , Y/, } and proceed as above
to get a cycle

{'
Cp^ == S G .̂.

In case G == UQ&, ^), the cycle Cp ^ is an algebraic cycle.
We now choose h e L71 and a C ̂  as above once and for all and obtain cycles as

above. Since h and a are fixed we drop the h in Cp ^; henceforth Gp means the cycle
constructed as above using elements X e h + aL".

3. The Cauchy-Riemann equations and the theta correspondence

In this section we discuss a cohomological version of the theta correspondence.
We will be particularly interested in proving that integrals of cohomological type depen-
ding on a symplectic (or split unitary) parameter are holomorphic. It is convenient to
take the viewpoint of continuous cohomology in this section. A basic reference for conti-
nuous cohomology is Borel-Wallach [4].

Let G be as in the beginning of the previous section and G' be the group of real
points of the restriction of scalars from k to % (resp. from ko to %) of Sp(n, k) (resp.
U(%, n) (ko)). Let G' be the twofold cover of G' whose restriction to each simple factor
is the 2-fold cover described in the introduction.

We consider the continuous cohomology groups H^(G, ^(V^). Here G operates
on ^(V^), the space of complex-valued Schwartz functions on V", by the action p given by

9{g) ?W -a^y^-1^).

Here a is a character of G which is trivial in caseG^ == UQ&, q) and, in case G^ == 0{p, q),
is the character e"® I® ... ® 1 where e is the spinor norm. Recall that by the van
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Est theorem [4] 5 the above cohomology groups may be realized as the de Rham coho-
mology of the complex G', d whose ith cochain group is given by

0= (^(D)®^^))0.

Here the superscript G denotes the G-invariants and ja^(D) denotes the smooth diffe-
rential z'-forms in D. The differential d is defined on a decomposable v ® 9 by

rf(v ® 9) == (rfv) ® 9,

where the d on the right-hand side is the usual exterior differential. We will identify a
continuous cohomology class with a class of closed differential forms on D with values
in ^(V^). If 9 is such a differential form, we let [9] denote its cohomology class. We
observe that we have an isomorphism given by evaluation at a point ZQ e D :

(^(D) ® ^(V^))0 ̂  (A1 p* ® ̂ (V^.

If 9 e (A1 p* ® ̂ (V^ we will use 9(Z, X) with Z e D, X e V^* to denote the cor-
responding element in (^(D) ® ^(V^))0. Here K is the maximal compact subgroup
of G that is the isotropy subgroup of ZQ and p is the orthogonal complement of f, the
complexified Lie algebra of K, in g, the complexified Lie algebra of G, for the Killing
form on g.

The group G' operates on ^(V") by the oscillator (or Weil) representation G),
see [15] or [27]. This action commutes with the action p of G, and hence G' operates
on H^(G, ^(V^)). We let K' denote the maximal compact subgroup of G' lying over
v(nycSp^Ry (respectively {V(n) X V(n)yc V{n, ̂ r). We let p' denote the ortho-
gonal complement to I', the complexification of the Lie algebra of K', in g' the com-
plexified Lie algebra of G' for the Killing form of g'. Let D' be the symmetric space
of G'. Then D' is Hermitian symmetric. Since we may identify p' with the complexified
tangent space to D' at the identity coset, we have a splitting of p' into the holomorphic
and antiholomorphic tangent spaces

p' == p4- + p-.

We observe that p~ acts on H^(G, ^(V^)) by the action of <o on the coefficients.

Definition. — We will say that the cohomology class [9] eH^(G, ^(V")) is holo-
morphic if it is annihilated by p~ under the action described above.

We will also want so specify the transformation law under K'. To this end we let ̂
be the r-fold external tensor power of the character of K' described in the introduction
and C^ be the 1-dimensional module on which K' acts according to the character ̂ .
We then consider the double complex G1'^ d, ^ given by

C '̂ - (A^p^A^p-)*®^^)®^^^'.

In order to describe the operators d and 8 we introduce the following nota-
tion. Let { X, [ 1 ̂  i ̂  N } be a basis for p and { co, | 1 < i < N } be the dual basis.
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Let { Z, \1 < j < N'} be a basis for p- and { T], | 1 ̂  j ^ N'} be the dual basis. Let A(co,)
(resp. A(^)) be the operators of left exterior multiplication by c .̂ (resp. 7^,). Then

N

(*) d == S A(co,) ® 1 ® o(X,) ® 1

and
_ N' _

(**) a = s i ® A(T],) ® co(z^.) ® i.

We will give explicit formulas for (o(X^) and <o(Z.) in § 7.

^Remark. — We have intentionally abused notation here. The above operators d
and ^ are the images of the usual operators d and 1) under the isomorphisms

(ja^(D) ® ̂ '̂(D7) ® ^(V^ ® -^J^5' -> G1'^.

Since these latter operators commute with 1 ® 1 ® © ® 1 (the notations © and 6 are
defined below) we have formulas for 9 e G1'j

d\ = 6^ and ~8^ = 6^

where the d and B on the left are the usual operators from differential geometry and the
operators d and 8 on the right are the operators defined by the formulas (*) and (**)
above.

We will consider elements 9 eG1'0 such that
(i) rf<p - 0,

(ii) a[(p] == 0.

Here [9] is the class of 9 in the rf-cohomology of G '̂. We should emphasize that
the equation ^[9] = 0 means that there exists an element ^ e G'"1'1 such that

^9 = d^.

Clearly such a 9 gives rise to an element [9] eH^(G, ^(V"))^ using the notation of
the introduction. We now want to explain how to compute the pairing (( , )) and where
the arithmetic lattice F' C G' comes from.

We recall that there is a remarkable distribution ©, the theta distribution, on ^(V"),
which is the sum of Dirac delta distributions centered at points of L\ Clearly, © is
invariant under F so we have © e Homr^CV^, C). Consequently if we define 6 '̂, g)
on G' x G by

W,g) = ©W) pQ?) ?),
then 6q,(^', g) descends in the G-variable to a closed differential form on M. As for the
G'-variable we have the following theorem.
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Theorem 3.1 (Well [27]). — There exists an arithmetic subgroup F'C G' and a diagram

e'
y \/ ^

r' —> G'

such that © is invariant under o [ j(F').

Corollary. — We have Wg\g) = W,g).

Here we identify F with J(F').
Thus in the G'-variable, O '̂, g) descends to a smooth (but non-holomorphic)

section of the line bundle oS?^.
In fact we will refine the above construction to take into account the congruence

condition of § 2. Let h and a be as in § 2. We refine the theta distribution as follows

Q,{x)= S S^-S).
S e h + OL"

Given y e ^(V71) we now define 6 '̂, g) on G°°(r\G') x G°°(r\G) by

e,,^'^)=©,(co(^)9(r1^)).
Of course the groups I" and F leaving Oq^Q^,,?) invariant are proper subgroups
of those leaving 6y(^', g) invariant. Since we have fixed h and a once and for all,
we will drop the subscript h henceforth, hopefully without confusion. Hence Q^g^ g) means
©.W)<p0r1^)).

We then have the following for the pairing (( , )) of the introduction.

Lemma 3.1.

((^[9]))(^)=J^Ae,(^).

We leave to the reader the task of proving that the pairing is well-defined on the coho-
mology level (this is just Stokes' Theorem [6]) and agrees with the pairing described in
the introduction. We will use O^T)) to denote the modular form defined by the integral
above.

We will prove Theorems 2 and 3 of the introduction by computing the Fourier
expansion of6(p(7]) for a suitable cp (described in § 5). We now explain what this means.
Note that Sp(n, k) and U(%, n) (kg) have natural representations on k271. Let N^ (resp. N^)
denote the abelian unipotent subgroup of Sp(7z,li) (resp. U{n, n) (ko)) consisting of
those elements which leave fixed each of the first n standard basis vectors (recall that we
are defining U(%, n) (kg) to be the isometry group of the standard split skew hermitian
form over k). We let N denote the corresponding subgroup of real points in G'. Then N
is isomorphic to the sum of r copies of the space S of symmetric n X n real matrices
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(resp. n X n hermitian matrices) and N 0 F' is a lattice S^ in S*". We let 3?\ be the dual
lattice to oS î in 8*' for the bilinear form B given by

B(X, Y) = tr XY.

Then 9<p(7]) has a Fourier expansion indexed by the elements of oS?^:

W ^ + ̂ ) = S a^v) e^u).
P £-2?!

Here T == u + iv is the decomposition ofr into real and imaginary parts (resp. hermitian
and skew-hermitian parts) where T is a point in l^ (resp. CI^).

The following lemma will be useful to us in § 4.

Lemma 3.2. — Suppose T\ is a smooth differential form on F\D which is rapidly-decreasing
and closed. Then there exists a smooth form T)' on F\D which is compactly supported and closed
such that

W = w).

Proof. — By Borel [3], there exists a smooth compactly supported closed form •//
and a smooth rapidly decreasing differential form $ such that

^ ) -^=^,

whence
W - 9,W = 9,(^) = J^SA 6,.

But this latter integral is zero by Stokes9 Theorem [6] since d^ A 6y and S A 9<p are both L1

on r\D. •
In the case that 9 is a holomorphic class the calculation of the previous Fourier

coefficients is greatly simplified by the following lemma.

Lemma 3.3. — If [9] is holomorphic and f\ is closed and rapidly decreasing^ then Q^) is
a holomorphic section of JS .̂

Proof. — Assume 3<p = d^ with ^ e G*"1'1. Then we have

^=rf6^.

We then have

ae,(7])=a(J^Ae,)=J^Aae,
==J^Arf6 ,=J^(73A6,)==0.

The last equality holds [7] because T] A 6y and T] A 6^ are both easily seen to be L1

since T] is rapidly decreasing. •
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Corollary. — We have a^(v) == 0 unless (B is totally positive semi-definite.

Proof. — If n ̂  2 this is Koecher's Theorem [20], 4-04. If n = 1 the corollary
follows because 6q,(7)) (r) is easily seen to have moderate growth. But if ^3(6^(7])) {v) =)= 0
for some P < 0, then, since 6^(73) (r) is holomorphic, it would increase exponentially
in v at oo (recall T == u + iv). •

Remark. — We have left to the reader the task of extending [20], 4-04, to the case
in which G' = U(n, n).

We will now evaluate the functions 03(6^(7])) (r) in the case that <p is holomorphic
and takes values in $(¥") to obtain part (ii) of Theorem 1 in the introduction. We will
consider only the case in which G^ = 0{p, q), the case of G^ == U(^, q) is identical.
We first recall the general results of [13] relating Fourier coefficients to periods. We
write ^3 as a disjoint union of G-orbits

-23 === U Q,.
• iei

Then we may write ^3 n (h + aL") as an (at most) countable disjoint union

^3 n {h + aL") = U {h + aL") n 0,.

For Q one of the above orbits we define

6^= S <p(Z,X)
x e <?

and ^==J^Ae^.

Consequently we have

^(e,(7))) =s^.(?
In [13] we obtained a general formula for a^ in the case that Q was non-degenerate.
In this case we have the cycle G^ == Sf^i G^j. of § 2. Then, as described in [13], we
have a fiber bundle

^,:D^G^..

We also define 6q, ^j. by

6^.(Z)= S ^9(Z,X).
* xe<Pnv?

Remark. — In the above formula we have abused notation by omitting the depen-
dence on T: we consider that the r-dependence is built into 9. We will continue to do
this throughout, indicating the r-dependence only where it becomes important. We
recall that T is a variable point in ))„ (resp. Cl)J.
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We then have the following result which is an immediate consequence of
Theorem 3.1 of [13] and Theorem 2.1 of [14] except for the case in which G == S0(^, 1),
n = p — 1. This case can be handled by a direct computation, see [18] where closely
related integrals are computed.

Theorem 3.2.

^^L^^*^.-
Here, (/^.), denotes the operation of integrating over the fiber.
We now let D .̂ be as in § 2 and G .̂ be the subgroup of G .̂ that acts trivially on

U,. Then Q .̂), Oy .̂ is the image of a G^.-invariant form on D^.$ however, G^j. does not
act transitively on D^j. unless ( , ) | U, is po3itive definite.

We now specialize to the case in which (B is totally positive definite. In this case JL
consists of a single G-orbit and G .̂ acts transitively on D^.. Hence (p^j^ Qy ^j. = ^(9) (»)
pulls back to an invariant form on D^j in the usual sense—it is invariant under the
connected component of the identity of the isometry group of D^j..

Lemma 3.4. — Suppose 9 is a holomorphic class. Then

^W)W -e^iv) S f ^A^(9) ( l ) .
» = 1 J Cu,

Proof. — The function 6y(7)) (r) is holomorphic. Hence by [20], 4-02,

^W)W =^(^)^(6^))(1). •

Remark. — Again we leave to the reader the problem of extending [20], 4-02, to
the case in which G' = U(n, n).

Finally the case in which [3 is totally positive semi-definite and 0 == On is identical
to the one just treated. In order to complete the proof of Theorem 1 of the introduction
it remains to prove a^ === 0 for the orbits Q C 3,^ — 3,^. This will be accomplished in
the next section, in case 9 takes values in S^). We observe that this problem arises
only in the case r = 1, since, otherwise, there are no degenerate rational n-frames X e V".

4. The vanishing of the contribution of the degenerate orbits to the Fourier
coefficients of O^Y])

In this section we show that the frames in 3^ = «2p — 3,^ do not contribute to
^(^V^))- ̂ e w1^ invoke Lemma 3.2 and assume Y) is compactly supported. We decompose
J?p further according to the dimension of U = span X; we define

J2p^ = { X e J2p : X e h + al̂ , dim span X = k } .
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We have (for rank (3 == t)
•H

j2p n (A + aL") == U ̂ ,.

We observe that J?p < == »2p •
We define 6(Z; M) and ^(6^)) by

6(Z;M)= S <p(Z,X)
x^p^

an(i ^,.(W) =J^AO(Z;M).

TA^m 4.1. — For any <p e H^(G, ^(V")) te^ ^/^ in S(V"), fl̂  a^
T] e H^(M, C), flwfi? p positive semi-definite of rank t, we have

<WW) -O for k>t.

Corollary. — If ̂  is positive semi-definite with rank (B = t, then

^W) =^^(6,(7))).

The proof of Theorem 4.1 will occupy the rest of this section. We put r == k — t,
whence r is the dimension of the radical of ( , ) | span X. Since there is a finite number
of T-conjugacy classes in a single rational conjugacy class of parabolic subgroups of G,
there exist a finite number of representatives { R^, Rg, ..., R^ } for the F-orbits of totally
isotropic rational subspaces of V of dimension r. If X e^p ^ we define R(X) e Gr^(V)
to be the radical of ( , ) [ span X.

Let R be a rational isotropic subspace of V. We define ^L ^ by

^^{XeA+aL^^X) = (3, R(X) =R} .

Here R(X) denotes the radical of ( , ) | U. We define I^C T to be the stabilizer of R.
Then we have

a

j2-= U U ^B^-IB..
^ < = i YGrB;\r p'^ Bt

We now define 6(Z$ (B, R), a differential y^-form on E = I\\D, by

6(Z$(B,R)= S <p(Z,X).
X^P.B

Let Q) be a fundamental domain for the action of F on D.

Lemma 4.1.

f hA6(Z;p^)]= S f hA6(Z;p,R,)].
•/M i-1 JrE,\D
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Proof.

f [T] A 6(Z$ M)] - f h A S S S <p(Z, Y-1 X)]
•/M JM » = i YerB,\r XG-^B,

= 2 f [TJA S S T*9(Z,X)]
i = i J ^ Yera^r xe^p^.

= S f [ S S y(7]A<p(Z,X))]i = i j ^ Yer^.\r xe^p^.

= i s f [y- s v)A9(z,x)].
i= i Yera , \ r J^ xe^p^^.

The previous exchange of summation and integration is valid because Y] is compactly
supported. It is not valid for general Y]. We obtain

f 7 ]A6(Z$M) = S S f 7] A S ?(Z,X)
JM i-i YerB,\rJ^ X£-23,B^

= i f h A S 9(Z, X)] == S f hA6(Z ;p ,R , ) ] . •
^i^rB^D xe^p.B, ^i^ra^D

Thus in order to prove Theorem 4.1 it suffices to prove the following theorem:

Theorem 4.1 (bis). — Let R be a rational, non-zero, totally isotropic subspace ofV and T]
a compactly supported form on F\D. Then

f 7 ) A e ( Z ; ( B , R ) =0.
*/rB\D

We let P be the parabolic subgroup of G defined by

P = { 5 e G : ^ R = R } .

We wish to parametrize P and then use this parametrization of P to parametrize the
cusp E == IY\D.

We choose a rational totally isotropic subspace R' which is dually paired with R
and obtain a rational Witt decomposition

V = R + W + R'.

Let Ui^R'^nU, whence U i ^ R + R ' ^ ^ W and U = R + Ui. We then
split W further by choosing a maximal rational subspace V^ C W such that ( , ) | Ug
is negative definite and U^ C U^. We define U' to be the orthogonal complement of U^
in W and Ug to be the orthogonal complement of U^ in U'. We obtain a rational ortho-
gonal splitting

W = Ui + U^ + U3.
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We note that necessarily dim Ug = q — r, and dim U\ == t. We let ( , )o be a rational
majorant of ( , ) such that the summands of the decomposition

V = R + Ui + Ua + Ue + R'

are pairwise orthogonal for ( , )o. We let ZQ be the corresponding negative ^-plane [2],
5.3. We choose a rational Witt basis { ^, ..., e^., w^y . . . , ^-2r5./i?./2? • - ̂ fr} ^or ^
with ^i, .. ., e, e R and fi,fz, ...,/, e R' and {e,,fj) = 8,^. We may assume
e^ e^ ..., €y e L. We define a(/) e P for t e R by

a{t)\R =^

^)|W=I^
^IR'-.-^.

Remark, — If we compactify D by taking its closure D in Gr^(V) then D consists of
the negative semi-definite ^-planes and lim^^ a(t) Zo is the negative semi-definite
^-plane R + Us.

We let A == { a(t) : t e R }. Then we have the usual decomposition of P associated
to the split torus A given by

P === NAM,

where M is the semi-simple part of the centralizer of A in P and N is the unipotent
radical of P. We " parametrize " D by

(A : N x A x SM ->• D
according to

{A (TZ, a, m) = namL^.

Here S^ == M/K^ is the symmetric space of M and K.^ is the maximal compact sub-
group of M that fixes Zg. Clearly [L descends to a map

^ : I ^ \ ( N X A X S M ) - I \ \ D .

We let^i: D —^ r^\D andj&af' r^D -^ F\D be the projections, whence TT == p^ o p ^ .
We let t : D -> R be defined so that / o ^(n, a{t}, m) == t. Then t descends to a function
also denoted t from F^\D to R. Finally we define a: I^\D -> R+ by a(Z) == ^t(z). A
level set t'1^) of ^ separates F^\D into two components, one { Z : t(Z) ̂  c } of finite
volume, the other { Z : t{Z) < c } of infinite volume. We will call the first set (for c large)
the " cusp " corresponding to the rational isotropic subspace R.

Lemma 4.2. — Let GC M he a compact subset. Then a \ TT'^C) is bounded.

Proof. — We consider the action of G on A*' V and observe that A1' L is a F-invariant
lattice in A*'V. We abuse notation and let ( , )o denote the form on A*^ induced by
the above form ( , )o on V. Let UQ e ̂  V be given by UQ == e^ i\ e^ A .. . A e^. There
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exists a compact subset C C G such that TT'^C) C r£. Indeed we choose 6 to be the
inverse image of G under TT restricted to the closure of a fundamental domain for F
in G. We next observe that the formula

^g)r = , , . . 1 .
(§ ^o^g ^o

is immediate upon writing g == na{t) mk and noting

{na{t} m)~lUQ == e~^ UQ.

Thus it is sufficient to prove that f(g) == ———————— is bounded on the subset
(g ^o? g ^0)0

rC C G. Therefore it suffices to prove there exists e > 0 such that

mm{{c~1^-1 Uo,c~1^-1 Uo) : c e6,y e F}^ e.

Now the set of quadratic forms {(c~1)* ( , )o : c e C } is a compact set, whence there
exists T) > 0 independent of G such that

(^-T( , )o^( , )o.

Now let (B be the lower bound of ( , )o on the non-zero vectors in the lattice Ar L. Then
clearly the above inequality holds with s = 7](3. •

Corollary. — For t sufficiently large

(^7)) {^n,a{t),m)) =0.

Proof. — The form T] has compact ?upport G on M so the support ofTC* Y] is contained
in TT-^G). •

In the appendix to this paper we will prove the following lemma showing that
|[ 6(Z$ p, R) || decays rapidly as / -> — oo (the other end of E — ^"^l) from the cusp).
Here |[ || denotes the pointwise norm for the induced Riemannian metric on E.

Lemma 4.3. — There exist positive constants G and s (depending on T) such that for all t
satisfying — oo < t^ T we have

liejiOxM^m^c^-'.

Corollary. — The form 73 A 6(Z; (B, R) is integrable on F^\D.

Proof. — The volume form of F^\D is up to a sign of the form e~ p< vol^ A dt A volg^
for some positive constant p. Moreover, since T] has compact support on M, the Rieman-
nian norm of T) is bounded and we have as a consequence of the above inequality the
following (with G' a positive constant):

\\^^Q,\\{^a{t),m))^Cfe-Ee~2f.

The corollary follows. •
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We can now prove Theorem 4.1 (bis). Let a,, X e R, , denote the multiplicative
one-parameter group of diffeomorphisms of E given by

^{na(t) mZo) = na(t + log -h) mZo.

We note the formula

<z(oc,(Z)) = ̂ (Z).

We define a form ^ on E of degree one less than <p by

+ (Z)= f\^6(Z;p,R)^.
•'0 Sa A

Here i ^ a denotes interior multiplication by the vector field a9- which eenerates a,.
" " 9a

We let S'^9_ denote the operation of Lie derivation of differential forms by a s- We
sa 9a

claim that 4 == 6(Z; p, R). Indeed, using the Cartan formula

-S? a = = i s o d -{- d o ^ s
So " S a asa

and recalling that o^ 6(Z; j3, R) is closed, we have^-^ r<e(z;p,R)^
8a J o A

-^^([^^(Zsp.R)^)
^a \ •/ o A /

-K^ .C^-^)'?)..,
-^(J'.'^^^)^),.,
"ia:-^^) !̂..,
=(^6(Z;p ,R)) | , , ,=6(Z;p ,R) .

Thus ̂  = 6(Z, p, R).
We now prove that ^ has rapid decrease at t -> — oo (or a -> 0). Indeed, let T e R

be given and let Ep C E be defined by

E , r = { Z e E | a ( Z ) < T } .

We first claim that if v is a smooth differential A-form on Ej, then for all \ e (0, 1] and
Z 6 E,,, we have

|Kv(Z)||«|[v(Z)||.
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Indeed, it suffices to prove the corresponding inequality when all the terms are
lifted to P. Let ( , ) denote a left P-invariant, right K n P-invariant Riemannian metric
inducing the given Riemannian metric on E. Choose a basis { ̂ } for the left invariant
A-forms on P which is orthonormal at the identity e on P (and hence at all points of P by
invariance). We may further assume that { coj,} consists of eigenvectors for the coadjoint
action o- of A on A^T^P). Hence there are homomorphisms ^ : R+ ->R_^ such that

(T(a(logX)- l)coJ,=^(X)6)J,.

Suppose now that 7, the lift o fv to P, satisfies 7 == S,̂  <o,. We then have

im2^/,2.
We next observe that the lift (again denoted by a^) of a^ to P coincides with right

multiplication by <z(logX), whence

^^i == XiW r̂
We obtain

lla^lJ^S^)2^/,2,

^II^II^Sa^2.
i

Finally we note that the eigenvalues of Ad fl(log X)-1 on T,(P) are 1, X-1 and X-2, whence
the eigenvalues on T^(P) are 1, X and X2, and, consequently, the functions /,(X) are
all majorized by 1 for X e (0, 1]. The claim follows.

We may now estimate || ^ || on Er. We have

^ 1 1 < ril^e(z;p,R)||^
J 0 8a A

< ri|^6(Z;p,R)||^
Jo A

^J^I^Z^R)!!^

< c (\-^ ^
Jo ^

^Ce-^Ce-^^
e - 2 f1 e

e~^ e~^
Jo A

< G' e~^~\

It is now clear that ^ has rapid decrease as t -> ~ oo. Combining the corollary to
Lemma 4.2 with the above we see as in the corollary to Lemma 4.3 that T) A ^ is inte-
grable on E and satisfies

rf(7]A^) ==7]A6(Z;P,R).

19
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Since E is complete and T] A 6(Z$ [B, R) is integrable with an integrable primitive, it
follows from Stokes Theorem for non-compact manifolds [6] that

f 7]A9(Z;(B,R) =0.
JE

5. Construction of holomorphic Schwartz classes

In this section we will construct holomorphic cohomology classes (for q ^ 1) in
H'(G, ^(V")) that take values in S(V"). In this computation the compact factors of G
play no role as we now explain. Using the notation established in § 2, we write

G ^ G^ x H

and V == V^ ® W,

where H is compact and ( , ) |w ls positive definite. We let 9' e ^(W") be the function
defined by

9'(^...,^) ==,-^1^.

Then multiplication by 9' gives an isomorphism (for all i)

(1: H^G^, ^((V^)) -> H^G, ^(V")).

Next observe that Sp(%, R)^ (resp. U(w, n)^) operates on the domain of (JL and Sp(^, R)^
(resp. V{n, n)^^ operates on the target of (JL. Also, p. carries holomorphic classes for
Sp(n, R)" (resp. V{n, n)^) to holomorphic classes for Sp(n, R)^ (resp. U(^ n)^^. This is
because 9' e H°(H, ^(W")) is holomorphic for the induced action of (Sp(n, R)^)'-1

(resp. (U(w, w)'^)^1). Thus for considerations of the above continuous cohomology
groups it suffices to assume that r = 1. We leave it to the reader to check that the
transformation laws of 9^ under V{n)^ and of 9^^ under (U(ra) X U^))" given
in (i) and (ii) of Theorem 5.2 match up with the transformation law of 9'
under (U^)-)^1 (resp. ((U(^) X U^))-)1'-1).

Thus for the next four sections we will assume that r == 1 and we will construct
holomorphic classes (for q > 1)

9^eH;f(0(A?)^(Vn)),

P^n^H^^U^?),^^)),

which take values in the polynomial Fock space S^").
We begin by choosing bases for p and p*. First we treat the orthogonal case. Let

{ ^i) ^2? • - • ? ^m } be a properly oriented (see § 2) orthogonal basis for V chosen such that

( ^ ,y j= l , l < a < ^ and (^, ̂ ) == -1, ?+ 1 < (JL< p + q.
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We may assume that Z, is the span of { v^,, .. ., v^,} and that { u^,, . . . , v^,}
is a properly oriented basis for Zo. We recall that there is on 0(V)-equivariant
isomorphism p '.A2^ ->o(V) given by

p(^A y ')y"== {v.v'^v' - (z/,y")y.

We define a basis { X,,: 1 ̂  i <j< m} for g by X^ = p(y, A y,) and we let {c^.} C g* be the
dual basis to { X,, }. We will follow the convention that a, p will denote indices between 1
and p and ^ v will denotes indices between p + 1 and p + q. With this convention
the set o f { X^, X^ } are a basis for f and { X^ } for p. The set { co^ } is a basis for p*.

We next treat the unitary case. In this case V is an w-dimensional complex
vector space and we choose an orthogonal C-basis { ^ 3 . . . ,z^} such that

(^a^a) = 1, l^a^ and (^, v^ = - 1, j&4-l^^+y.

We recall that there is a C-linear isomorphism p : V®c V — 9l(V) given by
p ( y ® y ' ) y " = = (y",^.

Here, &' denotes the image of v by the natural map V -^ V.
The anti-linear map y ® y ' \-> — y ' ® y induces the real structure on V ® c V that

corresponds to the conjugation of gI(V) relative to u(V). Here we are assuming ( , ) is
C-linear on V in the first argument and C-anti-linear on V in the second. We define
elements X,^ eg, for 1 ̂  j < k ̂  m, and Y^ eg, for 1 ̂  j ̂  k ̂  m, by

x^ = - P(^-0 ̂  - Vjc ® z7,). Y,fc = - p(^j ® ̂  + ̂  0 ̂ ,))-

Then[X^:l^j<^^m}u{Y^:l^j^^^m}isabasisfor3.Welet{co,^ , (o^}bethe
dual basis for Q\ Thus {co^, co^ : 1 ̂  a ̂  p, p + 1 ̂  ^ ̂  j& + q} is a basis for p*. We define

San = ^a(x + ^a^ l ^ a ^ / ? , ^ + l ^ p ( . ^ j & - | - y .

Then { ̂  } is a basis for the horizontal Maurer-Gartan forms on G of type (1,0).
The coordinates {(^) : 1 ̂  z ^ m} in V or complex coordinates {(^) : 1 ̂  i^ m}

in the unitary case relative to the above bases { ^, ..., u^} satisfy
P p+q

(^ x) = S ^ - S <
a = l n = = p + l

or (in the unitary case)
p p+ q

{x, x) = S I ̂  |2 - S [ ̂  |2.
a = = l ( A = = p + i IA

In the two cases we define 90, the Gaussian on V, by

<PoW = e-^2 or 90^) = ,-" îl<

In the orthogonal case we define the Howe operator ([12])
D4- :A l l tp*®^(V) -^A^+^p^^V)

by D.̂ . n (ik^L--8)]}.
^ % = p + i l a = i L \ 2 n S x J ] f

Here, A^^ denotes left multiplication by co^ .
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We define

€ = ̂ + 9o.
In the unitary case we define

1 w / p r / 1 /) \"nD + = 1 n s K,®k-1- .
^ - t A = P + l l a = = l L \ 7C ^a/J)

i r a . a i
Here ̂ /^ == n o— — z o~ an(^ Axpt. denotes the left multiplication by the element ̂  in2, \_QXy, °y^\
(p*)4' described above. In the unitary case we define

<p.+,=D+D+y..

We have the following theorem with m == p + ?•

Theorem 5.1. — (i) <p^ flW (p^g ̂  closed.
(ii) 9^ transforms under U(l)CSpi(R) according to det^2.
(iii) 9^g transforms under U ( l ) x U ( l ) C U ( l , l ) according to det^det:: .̂
(iv) y^ and 9^ are holomorphic and take values in S^^).

Remark. — In (ii) (resp. (iii)) det denotes the identity character of the group U(l)
(resp. det^. and det_ are the projections on the first and second factors ofU(l) X U(l)).
The group U(l) coincides with the connected covering group of U(l) such that the

pullback of det admits a square root (det)2, [16].

Proof. — Parts (i), (ii) and (iii) of Theorem 5.1 are proved in [12]. The result
that 9^ is a holomorphic class is hard and will be proved in § 8. Assuming this result
we prove that (p^g is holomorphic by a "see-saw pair55 argument.

We have a " see-saw pair 55

U(l , l ) 0(2A2y)

Spi(R) U(A q)

All four groups are subgroups of Spa^(R) and operate on <^(V) by the appropriate
restrictions of the oscillator representation. Moreover, we have the easily verified fact,
[12], § 6, that the image of <p^ under the natural restriction map of relative Lie algebra
cohomology complexes is 9^. Now we have seen that [y^] is annihilated by the anti-
holomorphic tangent space of I)i == Spi(R)/U(l) of the identity coset. But the anti-
holomorphic tangent spaces of U(l, 1)/U(1) X U(l) and Spi(R)/U(l) at the identity
coset coincide since the symmetric spaces themselves coincide. •

Thus we obtain holomorphic classes
^ e H^(0(j&, y), ^(V)) and <p^ e H^(U(^, y), ^(V)).
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There are corresponding classes 9;- and 9^ „ obtained by replacing D+ by the operator D-
given by

1 P / »» r / 1 Q \ i \

"-^."LU^-r^)]}-
1 v / m r / 1 Q \ i \D - = - n s k^ - l 5 Ior

^ ' a ^ l l ^ p + i L - \ TC ̂ / J j

To construct more classes we note that we have an exterior product to be denoted A

H^(G, ^(V)) 00 H:<(G, <^(V)) ^ H^G, <^(V2))

given by the usual formula for exterior product using the natural map from <^fV) ® <^YV)
to <^(V2).

We find the following results for the yz-fold exterior power of the basic class. Recall
m = P + ?•

Theorem 5.2. — (i) 9^ == ̂  A ... A 9,- transforms under V(n) according to (det)^2.
(n) 9 ,̂ ny = 9^3 A ... A 9^ transforms under V{n) x V(n) according to det^ ® dec"1.
(m) 9^ ^^ 9^^^ a^ holomorphic and take values in S(V").

Proof. — Parts (i) and (ii) of the theorem are proved in [12]. It remains to prove (iii).
Once again our proof will assume that 9^- is a holomorphic class. We first prove that 9^
is a holomorphic class again by considering the appropriate see-saw pair.

We consider the see-saw pair

0(A q) X . . . x OQ&, q) ^Pn(R)

0(A q) ^Pi(R) x ... x §p,(R).
Here both products are %-fold products, A denotes the diagonal embedding and we have
decomposed the 2^-dimensional symplectic space into an orthogonal sum of symplectic
planes. All four groups in the see-saw are subgroups of &[\JR) and act on ^(V") via
the appropriate restrictions of the oscillator representation of &p^(R). Now let D be
the symmetric space of OQ&, q) and A : D -^Dn be the diagonal mapping. Then as
explained in [12], p. 376, we have

< =^\P\^^ . . . A ^90").

where p , : D" -> D is projection on thej-th factor. From this formula it is immediate that
the class 9^ is annihilated by the anti-holomorphic tangent space p^- of

Spi(R)/U(l) x ... xSpi(R)/U(l)
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at the identity coset. On the other hand, the class 9^ is an eigenclass of U(n), whence
9^ is annihilated by the AdU(Ti) orbit of po- inside p~, the anti-holomorphic tangent
space of SpJR)/U(^). But the linear span of this orbit is all of p-.

The proof that 9^ ^ is a holomorphic class is analogous using the see-saw pair

U(A q) x ... X U(^ q) U(^, n)

v^9) U(l , l ) x ... X U(l,l).

Henceforth we will use a single symbol 9 to denote one of the classes (for varying n
and q) in

H:f(0(^ q) x ft OJR), ^(V-))
a==2

(resp. H:f(U(/>, ?) x A U(w), ^(V»)))
a==2

given by 9 = 9^®9o® ... ® 90 (resp. 9 == 9^,nfl(8)9o0 • • • ^Po)-

5. The Infinitesimal Fock Model

Let W be a vector space over R with a non-degenerate skew-symmetric form < , >
and let Jo be a positive definite complex structure (i. e. the form ( , ) on W defined by
{w^w^ ==< Jo w^ w^ > is positive definite symmetric) on W. Let {^ , ^2 , •••^/i,/25 •••?/n}
be a symplectic basis for W such that

Jo e! ==fi ^d Jo/i == — e, for 1 ̂  i ̂  n.

We may decompose W ® C according to
W ® C = W + W"

where W is the + i eigenspace of Jo and W" is the — i eigenspace of Jo. We define
complex bases { w[, w^ . .., w^} and { w[\ w'^ . . ., w^ } for W' and W" respectively by

w\ == e, — if, and w'/ = <?, + if^ for 1 ̂  j < n.

Then W' and W" are dually paired Lagrangian subspaces of W ® C and we have
0;.,0=2z8,,.

We will identify the Lie algebra 5p(W) with S^W) using the form < , > as follows.
Let x ojy e S^W) be defined by

x oy === x ®j -\- y ® x.

We then define 9 : S^W) ->sp(W) by

9^ °J) (^) = < ̂  ^ >J^ + <^ -2; > A:.
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We use the symbol 9 for the induced map on the complexifications as well. The complex
structures Jo induces a linear map DJo (the derivation extension of Jo) on all tensor spaces
of W. In particular we have

DJo(^ojO=(Jo;c)o^+^o(JojQ.

The operator DJo has eigenvalues 2i, — 2i, and 0 on S^W® C) with eigenspaces S2 W,
S2W" and W'®W". It acts on sp(W)c (using 9) and the zero eigenspace is the Lie
algebra u(w) of the maximal compact subgroup V{n) C Sp(W) consisting of those elements
which centralize Jo. Then 9 identifies p' with the — 1-eigenspace of S2Jo on S2 W and
(— DJo) induces an almost complex structure on p' which is U(w)-invariant and conse-
quently extends to an Sp(W) invariant almost complex structure on the Siegel space 1̂
which is necessarily integrable. The holomorphic and anti-holomorphic tangent spaces
at the base-point Jo are given respectively (in terms of 9) by

p+ == S^W") and p- = S^W).

We have chosen the complex structure — DJo in order to agree with the usual complex
structure which 1̂  inherits as an open subset of the n by n symmetric matrices.

We now construct a one-parameter family of representations <o^ of 5p(W®C)
on S*(W')*, the symmetric algebra of the dual ofW'. We observe that W' and W" are
dually paired by < , > and consequently it suffices to construct a one-parameter family
of representations on S*(W").

We first define a one-parameter family of algebras, the Weyl algebras H^^, asso-
ciated to the pair W, < , >. We define H^-^ to be the quotient of the tensor algebra
® (W ® C) of the complexification of W by the ideal ^ generated by the elements
x®y —y® x — X< K,y > 1. We let p : 0 (W® C) -^^ be the quotient map. Clearly
^(0 W') = S*(W') and j&(0 W") = S*(W"). We observe that ̂ \ has a filtration P
inherited from the grading of 0 (W ® C) and that

PP^\, F^J C F^-2^.

Thus F2^^ is a Lie algebra and we have a split extension of Lie algebras
F1^ ->F2^ ->sp(W®C),

where the splitting mapj: 5p(W® C) = S^W® C) -> F2^ is given by

j(x oj0 = - ̂ p{x o^) = - ̂  [p{x) p{y) + p[y) p{x)].

We now let / denote the left ideal in^ generated by W'. Then^/^ is a ̂ -module
and a fortiori an 5p(W®C) module via the splitting j. Clearly the projection
p : S^W") ->^\ induces an isomorphism onto i^-^/ and we obtain an action of H^^
and 5p(W® C) on S^W") which we will identify henceforth with S^W')', using < , >
as follows. We let z^ for 1 ̂ j < n, be the linear functional given by

z,(w') == < w\ w; >.
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We now identify S*(W')* with ^(C»), the algebra of polynomials in z,, z,, ..., ̂ .

we let ~8z, denote the derivation 0{ the polynomials in ^, ̂ , ..., ̂  determined by

^T (^*) = 8^. We now compute the above action, to be denoted p^, of-^ on ^'(C").

Since TT,, is generated by W it suffices to determine how W acts on ^(C»). The following
lemma is immediate.

Lemma 6.1.

(») Px«) = ̂ «

(") p,K)=2t•Xa .
0^

We next make explicit the action of sp(W®C) which we denote by <^. We
observe that

^ = Px ° J •• s?(W ® C) ->- End ̂ (C»).

Lemma 6.2.
a2

(i) ^(w; o w;) = 4X 8^ a^

(ii) "xK°0=-^,^.

(iii) <» (̂a;; o ̂ ') = - i L a + 8 ^1.
I. fay ozj j

Proof. — We prove (i), the proofs of (ii) and (iii) being similar:

^(W;OW;) =p^(j(w;o^))

= ~ 2X ̂ W 0 "'*))

== - ̂  ̂ W,)PW +p(w,)p{w,))

== - ̂  [P^(^("';)) Px^("*)) + Px(^(^)) Px(^(^))]

aa
=4X———. •

0^ 9z^

In what follows we wiU let to denote the action of sp(W®C) which we obtain by
specializing ~h to 2m in the above formulas. We will call a the infinitesimal Fock model of
the oscillator representation ofsp(W®C).
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Lemma 6.2 (bis).
/\2

(i) cofw' o w'j,) = Qni ———.
" •'" a - y ^ w

()Z^ ̂

(ii) (o(^/o0 == -^^.

[ Q 0 -j

(in) 6)(^,o0=-i z + ^\
^^j c7^ J

In what follows we will need an intertwining operator from the Schrodinger model
to the Fock model. On the Schwartz space ^(R") the operators

c ,̂) =^

^(y,-) = 2 ,̂
generate an action of the Heisenberg algebra with central character X = 2m, whence
an action a of^ on ^(B^) with X = 2ni. The induced action ofW on ^(R^*) is deter-
mined by

r\

CT(^) = 7T + 27r^ for ! <J< 7Z-OXy

Thus the Gaussian 9^ is annihilated by W and there is a unique ̂ ^-intertwining operator
i : ̂ (R")^ -^^(C^ satisfying i(<po) = 1. Here the superscript (u(^)) denotes the
U(7z)-finite vectors, i.e. the space ofHermite functions. The following lemma is immediate.

Lemma 6.3.

(i) l (^ -2^)l-l = z^
(ii)c(^+2^)r--4^.

Proo/'. — The first formula follows from
LO«) r 1 == p(^/)

and the second from
t(T(^.) t-1 = p(w;.). •

7. The Fock Model for the Dual Pair 0(V) X Sp(W)

We begin by recalling the basic fact that if V is a real vector space equipped with
a non-degenerate symmetric bilinear form ( , ) and W is a real vector space equipped
with a non-degenerate skew-symmetric form < , > then ( , ) ® < , > is a non-degenerate
skew-symmetric form on V 00 W. We wish to construct the Fock model for (co, 5p(V ® W))
and compute how o(V) and sp(W) operate in this model. A possible choice of almost
complex structure on V ® W would be id®J where J is a positive definite complex

20
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structure on W. However this almost complex structure is not positive definite. In order
to obtain a positive definite almost complex structure we choose a Gartan involution 9
For 0(V) and define

Jo=e®J.

We will assume that we have chosen a basis { ^, ..., ̂ } for V as in § 5. We choose
e = Ip,ff and Jo = I^®J. Here ly ̂  denotes the diagonal matrix with first p diagonal
entries equal to + 1 and last q diagonal entries equal to — 1.

We now compute the ± t-eigenspaces (V® W)' and (V® W,)" of Jo operating on
V 0 W ® C. The following lemma is immediate from the definitions.

Lemma 7.1.

(i) (V ® W)' == V+ ® W' + V_ ® W".
(ii) (V 0 W)" == V_ ® W' + V+ ® W".

Here V^ (resp. V_) is the span o f { ^ : 1^ a i ^ p } (resp.{v^:p + 1^ (JL ^ m})
and W' (resp. W") is the + i (resp. — i)-eigenspace ofj operating on W®C.

Thus the underlying vector space of the Fock model for sp(V®W) is
S(V_ ® W' + V+ ® W"). We introduce linear functionals

{ ^,5 ̂  1 ^ a ̂  p,p + 1 ^ pi < m, 1 ^ j ^ n}

on V+ 0 W' + V_ ® W" by the formulas

z^(v^w) = (v^w.v^w',' >, 1 < a<^, l^y^ n,

z^(v®w) == <v®w,v^®w^\ P + l ^ ^ ^ p + q , l ^ j ^ n .

We use these formulas to identify the space S(V^ ® W" + V_ ® W') with the space of
polynomial functions on V+ ® W' + V_ ® W" and then with the space of polynomials
in mn complex variables

{^^•: 1< a^j&, p + 1^ ^ ^ p +y, l ^ j < n}

to obtain an action of^ on ^{C^) which we again denote p^. We first compute the
induced action of W ® C. The following lemma is immediate from the definitions.

Lemma 7.2. r\
(i) p^®w;.) =2^——.

vz^
(ii) px(^®0 =^.

(iii) p^(^®w;) == 2^,.
?

(iv) p^(^®0 =2^——.
^^^

We now compute the actions ofo(V) and 5p(W) induced by the natural inclusions
Ji '• 0(V) -> 5p(V 0 W) and j y , : sp(W) -> 5p(V ® W) given by

j t { x ) = x ® \ and j^y) = \ ®y.



INTERSECTION NUMBERS OF CYCLES ON LOCALLY SYMMETRIC SPACES 155

We identify o(V) with A^(V) using ( , ) and 5p(W) with S^(W) using < , > and compute
instead the induced maps j\: A^V) -> S^V 0 W) and ̂  : S^W) -> S^V ® W) given by

j\{x) == x® < , y and ^(j/) == ( , )*®^

where < , >* and ( , )* are the induced bilinear forms on W* and V"1 respectively. The
following lemma is then immediate.

Lemma 7.3.
1 n n

(i) Ji( î A ^) == ̂ . {^ (^ ® ;̂.) o (^ ® w;/) - S (yi ® ̂ ') o (^ ® ̂ )}.-i ^-i
p+q

(ii) ^(^i o Wg) = S (^ ® M/i) o (^ ® Wg) - S (^ ® ̂ ) o (^ ® ̂ ).
(A==P+1

We can now compute the actions of o(V) and 5p(W) in the infinitesimal Fock
model (with parameter X) for sp(V®W). We recall that the elements X,p and X^
in ( and X^ e p for 1 < a, (B ̂  /» and p + 1 ̂  (x, v ^ j& + q are defined as follows.

Definition. — The elements X,p, X^ and X^ are the elements in g corresponding
to ^ A zTp, ̂  A ^ and ^ A ^ under the isomorphism p between o(V) and A^V) induced
by the form ( , ) described in § 5.

The following theorem is an immediate consequence of the previous formulas.

Theorem 7.1. — a) The elements X^, X^ and X^ o/o(V) operate on ̂ (C^) according
to the formulas
w ">(x••)=.s(^-4;-2•-^)•

<••' "^"•'--A^-2-'^).
C") ^(X,)-^^,.,,,,-^)^^.

6^ TA^ elements w\ o w^ w^ o w^ and w\ o w^ of 5p(W) operate on ̂ (C^) according
to the formulas

P ?2 1 v+q

W "x(^°^) =4\S^-^-+^ S ^^,
a = l O^ .̂ OZy^ A n = p + 1

1 2> »+<? 02
(ii) (o,( '̂ o <) = - - S ^, ̂  - 4X S

^a-! n=p+i8z^8z^'
v. ( 8 8 \

(iii) <^o<) =-, S k.——+——^
(a - l \ 0^-, 3^.,,

- + 0——— ̂
ai 82^ ]

9 8
v^+i^Sz^'^Sz^

v+s
v

^aT' + a~ z^}
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Corollary. — In the case X = 2ni we have

(i) co(XJ == 47T £ —a2— - 1 I z^ z^
i-i Sz^Sz^ 4'ns-i 3 ^

[ P f)2 1 P+ f f 1
(ii) <o(^ o co;) = 2i 4n S ————— - - S ^ .J.

a=l^^^a& W d ^ p + l J

We will need the formula for the differential d of the Lie algebra complex
(Api)E®^(Cwn))K:. The following lemma follows immediately from the formula of § 3:

rf= 2:A^®(o(X,J.

Lemma 7.4.

^.^(X^) -iL2^8'2,2-^--,.- ^-X l/^^ l/^^

Remark. — We will use the notation

d+=-^^^z^
( n ffl \

d- = +4n SA^® S ,————
a,^ a(A ^10Z,^Z,J

whence
^ = ̂ + + rf-

We now specialize to the case in which dim W = 2 (and X = 27n). It is shown in
Lion-Vergne [15], page 183, that the usual complex structure on ^ = SL^RYSOg
corresponds to D(— J) where J is defined on a symplectic basis { e,f} for W by

Je =f and Jf== — e.

Thus the anti-holomorphic tangent space to () at i is naturally identified with the
— 21-eigenspace ofD(-J) (whence the + 2z-eigenspaces of DJ) on S^WOC) and is

consequently spanned by —. w[ o w[. We obtain the following lemma. Since the index j

of the previous formulas is always 1 we will drop it henceforth.

Lemma 7.5. — A cohomology class [9] e H'(g, f; ̂ (C^) is holomorphic if and only if
I v y \ P+Q \
47T S .-- S ^ [9]=0.

\ a = 1 OZ~^ 47T tx = p + l ' y

Remark. — We will abuse notation and use Q to denote the operator
» ^2 i p + q

4-n 2 —o — — S - 2 ' 2 henceforth.
< X = = 1 ̂  47r t A = » + l

We will also need the formula for the class corresponding to <p^ in the relative
Lie algebra cohomology of 0{p, q) with coefficients in the Fock model. This latter class
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is represented by (1 ® i) (<p^) where i is the intertwining operator from the Schrodinger
model to the Fock model of the previous section.

Lemma 7.6.

( l®l)(<p,+)=(-^)^^^^^. . .^^,^A ...A<^,

Proof. — The lemma is immediate from the defining formula for <p,~ of § 5 and the
formulas

/ , , , / 1 8\ , 1t ( 9 o ) = l and ^-^,-^-^. ,

We conclude this section with a simplifying change of variable. We replace ^
and ^ by V4:nz^ and V4:nz^. Then 3, ^+, rf- and ( l ® i ) (9^) are transformed to
(respectively)

_ p y y + Q
~y= s .,- s ^,

a=l (7Z^ ( t= i>+ l

(^'^-SA.,®^^,
a, (A

(</-)'= S A,,® ———,
a, (i 0Za OZ^

(1 ® t) (y.+)' = (- 1)' (47T)-'/2 S ^ ... . ^^ ,A ... A (0
ai, . . . ,a^ •' •'

We drop the prime superscripts henceforth letting ^3 rf4', rf~ denote the right-hand sides
of the above formulas. By applying the inverse change of variable to ^_i below we
obtain the following lemma:

Lemma 7.7. — The class [<pj'] is holomorphic if there exists
^_i e^-1?*®^^)^

such that
8( S ^ • • • ^CO^^+iA ... A (Oa^+J ==4,-r

ai, .. •, v-q - •f

We find an explicit formula for ^^_ i in the next section. We will change our notation
there and use <p^ to denote the form S ^ ' ' ' zy. ^a p+i A • • • A ^a » + a *

ai, ..., v.q Q 1 Q

8. The proof that 9^ is a holomorphic class

We define a <( homotopy operator" h: [A^ p'1'®^^)]3^ -> [A^-1 p^^C"1)]1^
by the formula

A = S A ^ ® . —
a, ̂  ^^

Here A^ denotes interior multiplication by e^ where { ̂  } is the basis of p dual to the
basis { co^ } of p*. We now prove the following <( homotopy formula ".
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Lemma 8.1.
dh + hd = 1 ® E_ A+ — 1 ® p_ E+ — j&l ® p_

+ S Dp,®—^— + S D^® ̂  ̂ .
a, P C^a ̂ p t^, v

Remarks and Notation. — We have used the following notation in the statement of
the lemma

E _ = ^ — E ^ = = 2 ^ — p-=S^ and A ^ = = S ^ .
(A ^ a (̂  v. a C^a

The operators Dp^ and D^ are the derivations of the exterior algebra on p" determined by

Opa ̂  = ^Y ^^ and D^ co^ === 8^^ o^.

We observe that Dp^ and D^ may be interpreted in terms of the natural action a of
flIy(V^) and flI<,(V_) on p* == V^0V_ as follows. Let e^ GgI^(R) denote the matrix
with 1 in the i, j position and zero elsewhere. Then

Dpa == ^(^ap) and D^ == a(^).

Proof of Lemma 8.1. — We begin by computing d^ h + Arf4". We have

rf+ A = - (S Ap, ® ̂  ̂ ) o ( S A:, ® ^ — )
M \a,tA ozv.]

8=== — S A^ A^ ® 2?p ̂  ̂  ——,
a, 0, (A, v CZy^

hd^ = = ~ ( S A ; , 0 ^ 8 L ( S A ^ ® ^ ^
\a.(A OZ^ 0,v

a

=- S A^Ap,®Zp^^— - S A:,,A,,®^.
a, P, VL, v <7-2>o( a, p., v

Hence

d^h+hd-^^-^ S {Ap^A^^^^^^^ -SCSA^AJ®^^ .
a,0,iA,v ^a ^^ a

Here { A, B } denotes the anticommutator AB + BA. The Clifford identities [7], p. 112,
imply

{A^, A^} = 8^3 8^

and we obtain

d+ A + hd+ = - 1 00 (S ̂ ) (S ̂ a ) - S (S A:, AJ ® ̂  ̂ .
(A ^a <7 /̂ (A,V a

We rewrite the last term as

S (S A;, A,,) ® ̂  + S (S A;, A,,) ® z, ̂ .
(A a ( A + V a
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Applying the Clifford identities again,
A* A _ T _ A A*
"^(XjJl "^o((A —— "^OCtA '^a(A ?

A^ A«, = — A,, A^ for (A + v,

we obtain

S (SA:^ AJ ® ̂  2, =p\ ® S ̂  - S (SA^ A:̂ ) ® ̂  z,.
(A,V a (A (A,V a

Thus

d ^ h + h d ^ ==- l®(S^) ( i ; ^^-^1®S^
IA ^a==l <7-2'a/ ^

+(SA^A:J®(S^^J.
< a (A, v

We now leave to the reader the task of verifying that for any quadruple a, (B, (A, v the
composition A^ A^ is a derivation of the exterior algebra on p*. Hence 2^ A^ A^ is
determined by its action on p*. It is then immediate that

DV(A = S A^ A^.
a

We obtain
^+ + hd^ = - 1 ® p_ E^ - j&l ® p_ + S D^ ® ̂  ̂ .

^»v

We next compute the corresponding formula for d~~ h + ^/~. We first compute

d- h = (S Ap,®———) o (s A;,® .—)
\0,v cz^oz^ \a^ ^a/

= S Ap,A:,®. j3 + S Ap,A^®———.
a, P, (A, v OZy^ OZ^ OZ^ a, p, (A <7^ ^^p

Also

, hd- = S A^ Ap, ® ̂  ,
a,p,(A,v ' p "^^3^v

whence

d-h+hd-= S {A^A:,}®. a3 + S A p ^ A ; , ® , ^ .
a, P, (A, v ^^a ^^P ^^ a. P. (A ^^a ^^P

We use the Clifford identities again to obtain

S { A ^ , A : , } ® ^ , ^ — = l ® ( s . — V s ^ ) = l ® E , A ^
a, P, (A, v (̂ a ^<^'0 ̂ ^ \ ^ ^^(A/ \ a ozat!

Hence

d-h+hd- = 1 ® E _ A + + S (SAp^ A^) ® — 8 2 .
a, P IA ^^ ̂ ^
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We have as before

Dpa = ^-^PtA ^(A?
V-

and we obtain

d-h+hd- = 1 ® E _ A ^ +2^®—^--.
a, p • €Z^ OZ^

Combining the formulas for d+ h -{- hd^ and d~ h + Arf~, we obtain the lemma. •
Before proving that <p^" is a holomorphic class we need an elementary lemma giving

the behavior of 9^" under Ql,(R) and 9lp(R).

Lemma 8.2.

(i) (D,,® 1)^ =8,, ̂ .

(ii) ( D p , ® l ) 9 ^ = ( l ® ^ a L + .
V °h]

Proof. — The first formula follows immediately from the formula (assuming (JL < v)

D^(. . . A CO^ . . . A COp^ . . . ) = . . . A (O^v • • • A CO^...

and so if (JL =1= v the terms in D^ <p^" cancel (in pairs if a =h P). The second formula is
more subtle.

^^ =za^(„,2,a/a*••• S^^--- ̂ ^^

< 3

= 2 , s ^« ̂ i, ... a- (^ • • • S ̂ IP+I • • • "a,,̂ ,»=1 a^, ..., ctg oz^

a

= i?l a .^a ^a zal " * 8at3 ' " ̂  (oalp+l • ' • coatp+i • • • ^^^

a

== i?l a^.^a /al ' ' ' ^-1 ^a coalp+l ' * • (03p+i • • • ^-l^^

Dp^ 9^ = S 2 Z^ • • • ̂  ̂ aip+1 • • • IV(0)^+,) . . . (O.p+f f
i ai,...,a^ •f »

== ? ai,?,a ^al ' " ̂  * ' ' ̂  8aat coalp+l ' ' ' (03p+i • * • ̂ ^^

= S S ^ • • • ̂  ̂ a ̂ p+l • • • ^Pp+i • • • ^.ip+ff- •
» a^, ..., a^_i •' •(

We can now find ^_r

Lemma 8.3.

<W) =(/'+?-!) "(Wi o a;0 <p,+.
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Proof. — Since y^ is closed, we have
dh^ = {dh + hd) ̂

= (- 1 ® p_ E+) ̂  - {p\ ® p_) y,+

+ (p^®———~\ <pt+ + (s D-® ̂  zv) ̂^a, P (7^ ^^p/ IA, v

Here we have made the observation that

( 1 ® E _ A ^ ) 9 , - = 0 .

Now we apply the previous lemma to deduce

(SD^^)^=p_<^
{A,V

and (.2D'•0^)T•+=.2(18^)°(D-g)l"••+

( ^2 \ / r\ \

= S 1 ® - — — — — o l ® ^ — — < p .a.p a (̂J ^ "azg;^
An easy calculation establishes the formula

s^o^a^=^+ l)^+E^•
We obtain

(.SD^ ̂ ) ̂  = ̂  + ̂  A^ ^+ + E^ ̂  ̂ -
But

E ^ A ^ 9 , - = ( < 7 - 2 ) A ^ 9 , - .

Therefore
dh^ = - yp_ 9,- -^p_ 9,- + P- 9^ + (P + q - 1) A+ y^

== (^ + q - 1) [A^ 9,- - P- y^)
== {P + 9 — 1) ̂ (^ o ̂ 0 ?,' • •

Thus if we define ^_i = —————— h^, then
^ + ? — 1

^-^-i
and we have proved that [<p^] is a holomorphic class.

9. The calculation of the positive semi-definite Fourier coefficients of Q^)

We first review the results obtained in our earlier papers [13], [14], for the positive
definite Fourier coefficients flp of 6y(7]) for 9 defined as at the end of § 5. For these 9,
the forms ^(9) come from invariant forms on D, not just D^.. For the definition of the

21
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lattice JS?, see Theorem 2 of the introduction. We also remind the reader that the notation
G = n^i Gw was introduced in § 2.

Theorem 9.1. — Assume G^ = 0{p, q) and (B is positive definite. Then a^ == 0 unless
2(B e »Sf. In this case

^^2-nff/2^-7rSa-itr(^) F ^

^23

Proo/*. — This theorem is proved for the case in which M is compact in [13] and
extended to the case in which M has finite volume in [14]. •

In fact there is an exceptional case not covered by [14], namely the case in which
q == 1 and n == p — 1. In this case G^j is an infinite geodesic. This case may be treated
directly by the reader. An analogous result for much more general T] is proved in [18].
For the definition of the lattice oSf, see Theorem 3 of the introduction.

Theorem 9.2. — Assume G^ = U{p, q), then a^ == 0 unless 2(B (= oSf. In this case

'J ^^=Z-^-"^»ltr^) ^

•/Coo'^

Proof. — This theorem is proved for the case which M is compact in [13]. The
extension to the case in which M is non-compact of finite volume follows immediately
from Theorem 2.1 of [14] together with the explicit results of [13]; that is, the estimate
in the appendix and the formula K = z"^ of Theorem 6.4. •

We now define the Euler form Cy on SOo(A q)ISO{p) X S0{q) and the q-th Ghern
form ^ on SU(^, ?)/S(U(j&) x U(?)).

The Euler form e^ is zero if q is odd and is given for q == 21 by the formula
\{/ 1 V 1

^ = r~ A~ \ T\ ^ SSn(CT) ^0(1), o(2) • • • ^/-l). o(2/)
\ 47T/ t\ aeSq

where
V
V. /^ == S (Oatx^av-

The q-th Ghern form c is given by

/- iV 1
^ = -n—— -, S Sgn(w) ^(l).o(l) • • • ^0(0), O(fl)-\ Z.-K J q \ o, o e Sg x Sq

In other words we alternate separately over holomorphic and anti-holomorphic indices.
Here the curvature ti^ is given by

p
U^ = S IavA Sav)

a«l

and { ^(i} ls Ae basis for (p*)4' chosen in § 5.
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We can now state our formulas for the positive semi-definite Fourier coefficients.
Once again it is easy to see that a^ == 0 unless 2(B e oS?.

Theorem 9.3. — In case G^ •== 0{p, q) and rank (S = t with t < n and 2(B e oSf, w<? A^

%{W) = 2-wfl/2.-"2-^(a) f 7) A ^-(-
^p

Proo/; — By the Corollary to Theorem 4.1 we have

^p(W) -f ^A6(Z;M).
JM

We choose a set of F-orbit representatives ^p = { X^, . . . , X^} in ̂ , and unfold
the integral to obtain

^p(W) =2 f 7]A(p(Z,X,).
i==l •/IX,\D

Thus the Theorem will follow if we can prove that for X e J?p < we have

f 7)A(p(Z,X) =2-nqf2e-n^tT^}S ^^en-t.
J^\I> Jou

Both sides are multiplicative for coverings so it suffices to prove the above formula
for the case that F is neat. In this case F^, the stabilizer of U, acts trivially on U since
V = U + U1 is a rational splitting and ( , ) | U is positive definite. Hence F^ == I\j
and we may rewrite the left-hand side of the above equation as

F^X)=f v)A9(Z,X) .
Jrv\-D

We may now allow X to be irrational in V since <p(Z, X) is well-defined for all elements
of V71 and the domain of integration does not depend on X, only on span X. We will
need the following three lemmas to complete the proof of the theorem.

Lemma 9.1. — Let a eSO(ny. Then F^Xa) == F<p(X).

Proof. — The domain of the integral does not change and neither does the integrand
because

9(Z, Xo) = 9(Z, X)

for a e 80(72)'. •

Lemma 9.2. — Let b == {x^, . . ., x^ be the basis for U^ obtained from X^ by
refining X^ to a basis starting on the left (see § 2). Then there exists G^ e SOJR) such that
Y = X^ (TI is of the form

Y=(^, ...,^,0, ...,0),

where (j^, ...,j^) is a basis for U^ in the same orientation class as b.
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Proof. — Let ^ e GLJR)1" satisfy X^ ̂  == (X^)' with

(X^)'-^,...,^^,...^).

Let P be the parabolic subgroup ofGLJR) which stabilizes the subspace formed by the
first t standard basis vectors and Q= tP. Then q e Q implies that (X^)' q~1 is of the
form (^, . . ., ̂ , 0, . . ., 0), where (^, . . ., ̂ ) is a basis for U^ in the same orien-
tation class as (^, . . ., x^. Now decompose ^i according to the decomposition
GLJR) = OJR) .Q. We have g^==^q and X^ ^ is of the form

X^o^^,...,^, (),...,()),

where (j^, ...,J^) is a basis for U in the same orientation class as (^ , . . ., x,).
If, in fact, CTI e SO^(R), we are done. Otherwise we replace ^ by a^ ̂  where LI is the
element of 0^(R) that changes the sign of the {t + l)st coordinate and leaves all other
coordinates fixed. •

We now define an element X' e V71 = ©^(V^ by

(X^^Y, (X'y^X^ for i= 1,2, . . . , r .

We observe that a == (<TI, 1, . . ., 1) e SO^(R)r satisfies Xcr = X'. Hence we have
(by Theorem 5.2 (i))

<p(Z, X) = 9(Z, X'),

and by Lemma 9.1 we have
F,(X) = F,(X').

Remark. — The formula (p(Z, X) = (p(Z, X') implies that if dim span X^ < n,
then <p(Z, X) i&invariant under O^R)^ Indeed, if i e O^R)*" is given by i = (ii, 1, .. ., 1)
we have

9(Z, Xot) = 9(Z, X' 0 == 9(Z, X') = 9(Z, X).

Since (p(Z, X) is known to be invariant under SO^(R) X O^R)1'"1 the claim follows.

Lemma 9.3.

9^(Z, X') = 2-<"-"'/2 y^(Z, (^, .. .,^)) A <•,»-'•

Proof. — We have by definition

^(^ (^1» • • •^»)) = ^^^(Z, A;i) A ... A (p^(Z, A;J,

and the lemma follows from the formula [12], Proposition 5.1, which implies
^(0)=2- f f /2^. •

We can now prove the theorem. Indeed

F,(X') = (f (T)A ^"- 'A <p^(Z, (^, ...,^,)))) ( n e-"^).
\Jru\D / a =2
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Now Y' = (j^, ...,J^) is a non-singular frame and I\j\D is the associated tube.
Note that if (B' = (Y', Y'), then tr (B^ = tr((T). The theorem follows from the usual
c< Thorn Lemma ", i.e. Theorem 2.1 of [14] applied with T] replaced by T ) A ^-(.

Theorem 9.4. — In case G^ == V{p, q) and rank (B == t with t < n and 2(B e JS ,̂ ̂  Aa^

^p(W) = i-^e-^^^ f ^ A ^-(-
^p

Proo/'. — The proof of this theorem is analogous to that of the preceding one using
Proposition 5.2 of [12], implying that

^W=i~q^ •

Appendix. The estimation of |[ 6<p(Z; p, R)||

We will use the notation of§ 4. We let 9 e (A1 p* ® S^))^, (3 and R be as in § 4
and define an i-form 6<p(Z; p, R) on E = r^\D by

e^(z;p,R)=: s 9(z,x).
xe^p,B

We consider the following series depending on g e G, a lattice A C V" and a para-
meter X e R^.

SC?; A, p, R, X) = 2 exp(- 7TX tr(^-1 X, g-1 X)o).
X6^3,B

Here ( , )o denotes the positive definite form on V constructed in § 4. Clearly there exists
a constant G such that

l ie^Zo^R^I^CS^L^R^)

for a suitable X (depending on v). We choose a suitable Xo once and for all and define

SG?; A, (3, R) = S exp(- TrXo tr(^-1 X, ̂ -1 X)o).
xe^p.R

We redefine ( , )o so that \ == 1. Hence to prove Lemma 4.3 it is sufficient to prove the
following theorem. Let Q. be a fundamental domain for F n N in N.

Theorem A. — Let T > 0 be given. Then there exist positive numbers G and e such that for
all t e R with t^T and all n e Q,

(*) S(^) m^; A, (B, R) ^ Ge-66'21.

Proof. — We first claim that if the inequality (*) holds for some lattice A C V'1

and some s e R^. then it holds for any other lattice A in V'1 and another (possibly
different) e eR^. First if (*) holds for a lattice A then it holds for any sublattice of A
since all the terms on the left-hand side are positive. Second if (*) holds for A and
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(A e R then (*) holds for the dilated lattice y^A provided we change the constant e on
the right-hand side to pi2 s. But if A is a fixed lattice and L is any other lattice, there

exists N e N such that L C — A. The claim is now established.
N

We now replace L (if necessary) by the lattice Lo + Li + La, where

Lo == L n R, Li = L n W, Lg == L n R',

adapted to the rational Witt decomposition V = R + W + R' of § 4. We may also
assume that

L, = L; + L;' + L;",

where
L; == Li n Ui, Lg' == Li n V^ L^ = L, n 1:3

and W = Ui + Ug + U$ is the decomposition of § 4. We will now prove (*) for the
lattice A = L^ We write X == X° + X', where X° e L^ and X' e (L^. The condition
X e J ? p ^ imposes only a congruence condition on X°, but X' e (L^ must satisfy
(X'3 X') == p as well as the congruence condition. We can majorize S (up to a constant
multiple) by allowing X° to range freely over L^ provided X° spans R and allowing X7

to range freely over (L^ provided (X', X') = (B. This we accomplish by first passing
to bigger lattices L^ and (L^ which contain the projection of the vectors in h then
returning to sums over L^ and (L^ by the arguments above. We will henceforth drop
the prime on L^ so L^ is now a lattice in Ur We obtain

S{g, A, p, R) = S\ exp(- TT trQT1 X, g-^ X)o)
xeLg

S exp^TTtrQr1^-1^).
Y G L? n ̂ 3

Here the notation S^c^n means that we sam only over those elements of L^ that
span R, and J?o now means

j 2p={YeUr : (Y,Y) ==?}.

We now write g==m^m^a(t)n with WieSL(R), m^eO{'W) (or U(W) in
case G == U(j&, y)), fl(/) e A, n e N. Here we have identified GL(R) and 0(W) with
subgroups of G in the usual way using the Witt decomposition of V constructed in § 4.
We have

S(mi m^ a{t) n; A, (B, R) = ( S' exp(- ne-^ tr{m^1 X, ̂ -1 X)o))
xeLo

.( S exp(-7^(7^-lm,-lY,7^-l^-lY)o)).
YeL?n^3

We begin by estimating the first sum. We claim that there exists a positive constant e,
independent of m^ e M and X eL^, such that

trCw^X^^X^e.
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To see this, note that the quadratic forms (mi-1)" ( , )^ , m^ eM^, all have the same
discriminant relative the lattice L (the determinant of the matrix of the form relative
a Z-basis for L). The claim then follows from the next elementary lemma.

Lemma A-l. — Let L C Vf be a lattice and { Xi, . . ., X^ } C L be a spanning set for R\
Let ( , ) be a symmetric positive definite form on K6 with discriminant d^ relative the lattice L.
Then

S (X,, X.) > kd^.
t-1

Proof. — Suppose { X,i, . . ., X,^} C { X^, . . ., X^ } is a basis for R^. Since

^ (X,, XJ ^ 2^Li(X^,X^), it suffices to prove the inequality for the case n = k',
i»l

that is, the case in which { X^, . . ., X^ } is a basis for R^. Let S be the matrix of ( , )
relative { Xi, .. ., X^ }. Let R be a rotation such that RSR~1 is a diagonal matrix with
diagonal entries d^, . . ., <4. Then ^, ̂ , .. .,<4 are positive and their product d satisfies
d^ dQ. Now, by a well-known inequality,

(detS)^ - d^ = (d, d, . . . d^^d, + ̂  + . . . + A) ^ ^ tr S.

Therefore
trS^^"^^. •

Thus we obtain the claim with e = -^rd11" (recall dim R = r). We now write

tr(CTi-1 X, OTr'X), = ̂  tr(wr1 X, m,1 X), + J tr(mr1 X, wf1 X),

^s+^tr^1^^-1^,.

We obtain
S(OTI OTg a(f) w; A, (3, R) < exp(— ew-2')

.( S^expY-1^-2 '^^1^^1^))
\XGLo \ •̂  / /

( S exp(- TC tr(w-1 nq1 Y, yz-1 w-1 Y)o)).
YGL^n^p

We bound separately each of the two functions

Fi(̂ ) = S' exp ( - ! TT tr(m,-1 X, m,-1 X)o)
XGLg \ 2. /

and F2(7^m2) = S exp( — TC tr(%-1 m^1 Y, n~1 w^1 Y)o).
YEL?n^p

We will bound Pi and Fg for the case G = SOQ&, ?). The case G = SU(j&, q) is identical
(up to changing R to C and 0(W) to U(W)).
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We first estimate Fi as a function on SL(R). We may assume that r ^ 2, for
if r = 1, then SL(R) is the trivial group. For the rest of this argument we will use g
(instead ofwi) to denote a variable element in SLy(R). Also since the elements X eV^
are in fact in R71 we may forget about the ambient group OQ&, q) and ambient vector
space V. Thus the summation runs over elements X contained in a certain lattice
A C (R)^ with the property that span X == R. We now choose a basis for R and identify R
with R/, R" with the space M(r, n; R) of r by n matrices with real entries and SL(R)
with SL/R). We will prove that the sum

F(,?;A,( , )) = S' exp^Tttr^X^X))
XGA

is a bounded function on SLy(R) for any lattice A C M(r, n; R) ^ (R*^ and any positive
definite form ( 5 ) on R*'. Here the superscript prime indicates we are summing over
matrices in A of rank r. As before it suffices to prove boundedness for a single lattice in
(R^" and a single positive definite form ( , ) on R^ We choose A == M(r, n', Z) ^ I/*
with L = Z*' C R*" the standard integral lattice and take ( , ) to be the sum of squares
of the coordinates. We put F == SLy(Z).

Since F is clearly left-invariant under F, it suffices to prove that F is bounded on
a fundamental domain 2 for F in SLy(R). We recall the definition of the Siegel set
(5( ^ C SL,(R) for t e R^ and co the fundamental domain for F n N in N, where N
denotes the subgroup of strictly upper triangular matrices of SLy(R). We have

Gt ^ ={g e SLy(R) : g == na(d) k with n e co and —— > t for 1 < i ̂  r — 1 }.
[ "i+i f

Here and for the rest of this section we will use the following notation. The letter d will
denote an element (d^d^ . . . , rfy) of (R-^ and a{d) will denote the diagonal matrix
with diagonal entries (^1,^2? • • - 5 ^r)- We let A denote the subgroup of diagonal matrices
and A^ C A be the subset

A, == ( a{d) e A : a,(fl(rf)) = d%- > t for 1 ^ i ̂  r - 1 ) .
\ "1+1 )

By the basic theorem of reduction theory there exists a compact subset C of SLy(R) such
that

^=®^uC

for t sufficiently small. Thus it suffices to bound F on ©<^. Now ifg e G^^ we may write
g as g == nak with n e <x), a e A( and k e S0(r). We obtain

F(g) = F(nak) === S exp(~ n tr(a-1 n-1 X, a-1 n-1 X)).
XGL"

d,Since A acts on N by sums of the simple roots 0^3 ocg, . .., ay with o^(flf) = ,— ^ ,̂
di+i

it is clear that the set U a~1 o"1 a is a relatively compact subset ofN. Now we have
a6A<

tr(^-1 n-1 X, <z-1 w-1 X) = tr((fl-17T1 fl) a-1 X, (a-1 n-1 a) fl-1 X).
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Clearly then we may find a constant c such that for all g e G^ we have

tr^X^X^tr^X.^X),

where g == nak is the Iwasawa decomposition of g. It remains to estimate

F(fl) = S^exp(- ^tr(fl-1 X, a-1 X)),; a e A,.
XGL"

It is convenient to parametrize A( somewhat differently. We put c = (^, ̂ , ..., c )
and let a"^) be the diagonal matrix with diagonal entries {c^\c^\ ...,3^). Thus

yO;) e A, if and only if ^-l > ^ for 1 <^ r - 1. We record the elementary conse-
quences: l

(a) y ^^ti-l for l<z<r,
î

(b) ^< r^ for l ^ z ^ r ,
^r , _ j •' ' - - . . . • . . . . .

(c) .. ^^.^(r-2)/2<:i-l/(^-l),

We have identified X with an r by n integral matrix {x^) of rank r by writing
r : •

X^== SA:^^ for l ^ j ^ n .

Here { ^, ^? - • • ? ^r} ls ^e standard basis for R11. We obtain

tr(X,X)=S^

and tr^)-1^^)-1^) = ,̂ (̂ 4) = ̂ S^ || X11|2 .

Here we let X1 denote the vector in 1̂  given by the z-th row of the matrix (^) and [| X1 ||2

denotes the sum of the squares of the entries in the i-th row. Thus we have passed from
(Xi, ..., XJ, an Tz-frame in R'' to (X\ ..., X^ an r-frame in R\ We note that,
since (^,) has rank r, the vectors X1, . . . .X" are independent. In particular none of
them is zero. We now change the meaning ofL and let L denote the integral lattice in R".

We can show that F(^(c)) is bounded on A,. We break up A( into two regions.
one where ^ is large, say ^> 1, and the second where c^ is small, say ^ < 1. The esti-
mation of the sum in the first region is easy. By (a) above we have

S c\ || X1 ||2 ^ c\r^^ || X1 [|2 ̂  a S 1 1 | X1 ||2,
»=1 i=0 » = o

where a is a positive constant depending on t (a == 1 ift^ 1 or a = t2^2 if t< 1}.
We obtain

FTO) ^ S ̂ exp(- a7r tr(X, X)) < G.

22
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We now prove boundedness in the second region. We have (with 2' indicating
a sum over r-tuples of independent lattice vectors)

F(S/(.))=S;exp(-7c2^1|Xi||2)

< S exp^TCS^IIX^II2)
(L-W r <-i % " " /

^"^e?-^^-^""'^'
We again use (a) with (;, > r-1 ̂  for i == 1, 2, ..., r — 1 in the first r — 1 products
above to obtain

FTOX^ S exp(7^2i-2||X||2))( S exp(-^||X||2)).
< = 1 L—{0} L—{0)

We now use (c) to obtain

W^n^ S exp(~w^2(-2||X||2))
» == 1 L~{0)

( 2 exp(- ̂ -^i-2^-1' 1 1 X |12)).
L-{0)

We recall the behavior of the sum S exp(— u || X ||2) for u tending to zero.
XGI*

The following lemma is an immediate consequence of Poisson summation.

Lemma A-2. — There exists a constant Gi such that

S exp^llXin-G^-^2 asu->0.
X £ L

Corollary. — Given any T e R ^?r<? <w^j a constant C^ such that
S exp(~ ^ |[ X ||2) ^ Gg u-^ for O^u^T.

X £L

We also have the following elementary estimate:

Lemma A-3. — There exist positive constants a and €3 such that
S exp(-y||X||2)^ Gs^ for v^ 1.

XGL-{0}

Applying Lemma A-2 to the first factor of the product on the right-hand side of
the previous estimate for F^^)) and Lemma A-3 to the second factor we obtain positive
constants C{t) and a(^) such that in region 2 we have

FTO) < C{t) ̂ -^-^ exp(- a(^) ^-2/(T-1)).

Clearly this formula implies that F(^(^)) is bounded in region 2.
We now estimate F^nm^). The set S = {(w~1)* ( , ) : n eQ} is a compact set of

positive-definite forms. Hence there exists s > 0 such that for all n e Q

(^-T ( , ) ^ < , )•
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We see then that it suffices to prove that
FM = 2 exp(- n{m,1 Y, m,-1 Y)o)

YeL;rt^3
is bounded on 0(W). In fact we have the following lemma.

Lemma A-4.
F,(m^F,(l).

Proof. — We first recall the Berger decomposition of 0(W) associated to the invo-
lution a e 0(W) with — 1-eigenspace equal to Ui and 4- 1-eigenspace equal to Ug -|- U3
(the splitting W = Ui + Ug + Us was defined in § 4). We let H be the centralizer
of <y. Let t -==• min{ dim U^, dim Ua }. We choose orthogonal sets { u^ ..., u^} C Ui
and { v^ v^ ..., Y{ } C Ug with {u,, u,) == 1, 1 < i ̂  I , and (&,, y,) == — 1, 1 < i ̂  /'.
For r == (r^, r^, .... ̂ ) e R^ we define ^ e 0(W)

b, M, = ch{r^) ̂  + jA(^) y,)
for 1 < j < /

b^v^==sh(r^) u^+ch{r^ v^

and by = 1 on the orthogonal complement of T == span { u^ ..., u^ v^ ..., Y{ } for ( , )
in W. We observe that the orthogonal complements of T computed relative to ( , )o
and ( , ) coincide. We define B C 0(W) by

B^^reR^}.

We also let Hi C H be the subgroup which acts by the identity on Ui. Then the Berger
decomposition is given by

0(W) == HBK = 0(Ui) Hi BK.

Thus any m^ e M may be decomposed as m^ == hh^ bk with A e 0(Ui), Ai e H^, b e B
and k e K n 0(W), whence

tr(m,-1 Y, m,1 Y)o == tr(6-1 h^ h-1 Y, b-1 h^ h-1 Y)o.

But in Lemma A-2 (ii) of the appendix to [13], it is proved that for all b e B and Y as above
tr^Y^Y^t^Y,^.

We obtain
tr(m,-1 Y, m, 1 Y)o > tr(A-1 Y, h-1 Y)o.

Thus it remains to prove that
F,(A)== 2 expC-T^-1^-1^)

Ye^n^p

is bounded. Now in case (3 is positive semi-definite, then ( , )| Ui = ( , )o | Ui by
construction and

(A-^A^^Y.Y).

The sum is necessarily finite and we find that Fg is indeed bounded.
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